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Data Languages

» Nominal sets: sets X equipped with supp: X — P¢(A).

» Recognizable data languages over ~ € Nom:

data language = equivariant predicate
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Equivalent descriptions: rigid MSO and single-use register automata.

Bojanczyk 2008, Colcombet, Ley & Puppis 2011, Bojariczyk & Stefanski 2020
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=# Gabbay, Litak, Petrisan 2011



Further Results

» Spaces of bounded pro-orbit-finite words.
» Recognizable data languages as continuous predicates.

» Equational theory using pro-orbit-finite equations.
(joint work with F. Birkmann & S. Milius)

» Duality theory based on nominal Stone duality:

(n-bounded nominal Stone spaces)°?

~

locally n-atomic orbit-finitely complete nominal boolean algebras.



