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Abstract. We study generalized automata (in the sense of Adámek-Trnková)
in Joyal’s category of (set-valued) combinatorial species, and as an important
preliminary step, we study coalgebras for its derivative endofunctor ∂ and for
the ‘Euler homogeneity operator’ L ◦ ∂ arising from the adjunction L ⊣ ∂ ⊣ R.

1 Introduction

The theory of combinatorial species arose in the work of André Joyal [71,72] as cate-
gorification of the theory of generating functions [130]; crafting a bijective proof [96]
to grok numerical identities in terms of bijections between finite sets is acknowledged
as the fundamental problem in modern combinatorics. For Joyal, a ‘species of struc-
ture’ is a functor having domain the category of finite sets and bijections; properties
of the category of all such functors can then be given combinatorial meaning, and
combinatorial identities acquire meaning as bijective proofs (=isomorphisms of func-
tors). Joyal’s insighftul proof of Cayley’s counting of trees [19], paved the way to a
booming development of techniques (propelled by the support of an insider of enu-
merative combinatorics, and genius, as C.G. Rota) in domains such as representation
theory of groups [20,83,111,133], the study of set partitions [17,68,95], Möbius functions
[96,114,115], graph theory [100], up to the exciting field of combinatorial differential
equations [82,83,97,12]. This wealth of applications is by no means limited to the field
of enumerative combinatorics; the operation of plethystic substitution [10,104,105] is
recognized as the fundamental building block in the theory of operads envisioned by
J.P. May [93,94] and finds applications to algebraic topology and algebraic geometry
[30,36,84,106], logic and computer science [32,33,135], theoretical physics [37,38], and
more.

At about the same time, another application of category theory gained momentum:
the idea of interpreting abstract state machines inside general categories. The line of
research initiated by Arbib–Manes [5,109], Goguen [43,44,45], Naudé [101,102], and
others [39,58,63,126] culminated into Ehrig’s monograph [25] on automata ‘valued’ in
an abstract monoidal category K. This provides a systematic, category–theoretic in-
sight into the transition from determinism to non-determinism, that can be seen as the
passage from automata in a monoidal category [98], to automata in the Kleisli category
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of an opmonoidal monad [51,65] (such as for example the probability distribution mon-
ads for convex spaces, [24,31,64,66,92] or one of its companions –the subdistribution
or unnormalized distribution monad).

The category-theoretic content of such an approach to ‘machines’ goes a long way:
a tentative chronology follows, but it can only scratch the surface of an immense, often
submerged, body of research.

– [1,3] introduced the notion of an F -automaton in order to abstract even further
from the monoidal case the ‘dynamics’ igniting the behaviour of an abstract ma-
chine; the progression in abstraction is as follows: from Cartesian machines, i.e.
spans E ← A × B → B, one goes to monoidal ones, i.e. spans E ← A ⊗ B → B;
these are the objects of categories Mly(K,⊗)(A,B). Subsequently, one abstracts the
action of A ⊗ on E even further, using a generic endofunctor F : K→ K; this
is the category MlyK(F,B).

– Only few years prior, extensive work of Betti-Kasangian [13,14] and Kasangian-
Rosebrugh [74] pushed for the adoption of ‘profunctorial’ models for automata,
capable to pinpoint their behaviour, and their minimization, as a universal property
[42,45].

– An insightful idea of Katis, Sabadini and Walters [75,76] recognized that categories
of automata organize themselves as the hom-categories of a bicategory KSW(K).1

– in [48,51] René Guitart introduces the bicategory Mac as a refinement of a bicate-
gory of spans.2 In [56], Guitart proves Mac is simply the Kleisli bicategory of the
2-monad of cocompletion under lax colimits. This theme is reprised in [50] where
Guitart introduces the notion of lax coend [60,85] as a technical preliminary to
expand on the theme of [56].

Pushing further these ideas intersects the most prolific branches of modern category
theory.

Building on [25], R. Paré proposed in [107] the notion of a Mealy morphism as a
proxy between strong functors and profunctors in any V-enriched category C. The
paper culminates in the impressively general and elegant3 result that the bicategory
of V-Mealy maps is simply the Kleisli bicategory of the lax idempotent 2-monad of
V-copower completion.4

In a joint work [16] we explore how KSW’s ‘circuits’ and Guitart’s Mac connect
via a local adjunction [67,73], and can be used to enhance categorical automata into

1 Interestingly enough, KSW category can be seen as a lax analogue of the category of
‘categories with endofunctor’ upon which one builds the Spanier-Whitehead stabilization of
the category of (pointed) CW-complexes, a staple construction in stable homotopy theory
[123],[87, Chapter I].

2 Note in passing that this is related to Betti, Kasangian, and Rosebrugh idea as two-sided
fibrations and profunctors are well-known equivalent ways to present the same bicategory.

3 The reader suspecting that this is an overstatement shall rest with the thought that this
straightforward statement bestows the bicategory V-Mly with a clear-cut universal property
generalizing, in one fell swoop, KSW and Guitart’s approach to every base of enrichment.

4 The reader will have noticed a repeating theme: categories that naturally arise organizing
computational machines share a universal property of Kleisli type (they are initial in some
sense, for ways of factoring a certain monad), and the monad is ‘of property type’, i.e. it is
a 2-monad of cocompletion under certain shapes [80,136].
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widgets ‘typed’ over a bicategory with possibly more than one object; in short, it allows
the passage from a bicategory of automata to automata in a bicategory, drawing some
ideas from Bainbridge’s [6,7]. Despite its relative obscurity, likely due to its cutting-
edge nature, Bainbridge’s work recognized the importance of bicategory theory as a
foundational language for the theory of abstract automata and, in particular, proposed
the idea of left/right Kan extensions along an ‘input scheme’ to analyze behaviour and
minimization.

To sum up, we find ourselves in the following situation today: a forgotten school of
category theorists hid an exciting claim behind a curtain of 2-dimensional algebra:

A piece of formal category theory as envisioned by [47,49,52,120,127,128,131]
serves as the mathematical foundation of abstract state machines.

This intriguing hypothesis is scattered across various sources, often unaware of each
other; it has been hinted at multiple times and continues to leave traces of its presence
for those willing to follow it. We are left with a conjecture and a clear work plan:
can this fundamental guiding principle be taken seriously and formalized? Whoever is
willing to take up the challenge of verifying this claim is now tasked with lifting the
curtain and exploring a rich fauna of categorical widgets.

The present work grafts on top of the wide branches of this overarching project,
studying categorical automata theory specialized to the differential 2-rig (a notion in-
troduced by the author in [86]) of Joyal’s combinatorial species. The category Spc of
species is a presheaf topos equipped with a plethora of tightly-knit monoidal struc-
tures interacting with a differential structure; this richness implies that when used as
an ambient category for monoidal/functorial automata, it gives rise to an interesting
theory that, when stated at the correct level of abstraction, is ‘stable under small per-
turbations’, which means that similar results to the ones presented here export without
much effort to presheaf categories equipped with a plethystic substitution operation,
such as coloured species [99], linear species (both in the sense of [82] and in the sense
of k-Mod-enriched, [4,36]), Möbius species [96], nominal sets [108],. . . and it allows to
predict what happens when abstract automata are interpreted in a differential 2-rig
other than Spc, generalizing Theorem 4.

1.1 Outline of the paper

The basic terminology about the category of species that we need is classical, drawing
upon various sources such as [11,32,135,132]; we rework an equally ‘classical’ construc-
tion of the categories MlyK(F,B) and MreK(F,B), drawing from [25,51]. In Proposi-
tion 5, we introduce the concept of ‘ω-differential limit’, as an intuition for what the
terminal object in MlyK(F,B)/MreK(F,B) should represent; the terminology is some-
what borrowed from ergodic theory (specifically, the notion of ω-limit, see [40, Def.
1.12]). Later, in Section 3.1, we thoroughly explore the fibrational properties of the
MlyK construction, yielding the 2-fibration of the total Mealy 2-category Mly, along
with two-sided fibrations [119] MlyK/MreK allowing to consider all dynamics and all
outputs at the same time, coherently. In (13) we define the monoidal Mealy fibration
as a particular instance of this construction. The fundamental result of [75], defining
the KSW category of a monoidal category (K,⊗) arises (Theorem 3) when the pro-
functor associated to the monoidal Mealy two-sided fibration carries the structure of



4 Fosco Loregian

a promonad, of which KSW(K,⊗) is the Kleisli object. In Proposition 7 we address
the issue of lifting accessibility from K to MlyK/MreK, consolidating the idea that nice
properties of the ambient category lift easily to its category of automata. Interestingly,
assuming K is a differential 2-rig in the sense of [86], MlyK and MreK are differen-
tial 2-rigs: an upshot of [86] is that differential structures are ‘difficult to create’, and
yet categories of K-valued automata exhibit an additional differential 2-rig structure,
simply but not trivially related to K.

Finally we turn to the task of studying (Mealy) automata in species, focusing on the
particular case where K is the category of Section 2; given its structure of differential
2-rig, we are particularly interested in studying differential dynamics, i.e. in studying
categories MlySpc(F,B) where the generator F of dynamics is induced by the derivative
functor. Given the results in [110], recalled in Theorem 1, there is plenty of choice for
such F ’s: the triple of adjoints L ⊣ ∂ ⊣ R generates four functors, a comonad-monad
adjunction L∂ ⊣ R∂ and a monad-comonad adjunction ∂L ⊣ ∂R (paying tribute to
the ‘twelvefold way’ of [116], we dub the study of this quadruple of pairwise adjoint
functors the ‘fourfold way’); each of these adjunctions generate monads or comonads
R∂L∂, L∂R∂,∂R∂L, ∂L∂R and all these are finitely accessible functors because R is.

2 The category of species

Issues of page count force us to condense a wealth of material in a small space; the
reader will find excellent introductory texts and surveys on the category of species in
[11,32,135,132] or in the original papers by Joyal [72,71].

After defining the category Spc of combinatorial species, we recall its various mo-
noidal structures and outline how they relate, with particular attention to the Day
convolution monoidal structure, and its differential 2-rig structure in the sense of [86],
with particular attention to the fact that the derivative functor ∂ : Spc → Spc has
both a left and a right adjoint. We study co/monoids in (Spc,⊗Day), since monoi-
dal automata theory in a category with countable sums forces us to understand the
structure of the subcategory of ⊗Day-monoids at a fundamental level.

Definition 1 (Species and V-species). Let S be a set, and V a symmetric mo-
noidal closed category admitting all limits and colimits. The category (S, V)-Spc of
(S-colored) V-species is defined as the category of functors F : P[S]→ V, where P[S]
is the free symmetric monoidal category on S, regarded as a discrete category.

We will particularly be interested in the category (1,Set)-Spc (that we dub simply
Spc in the following), where 1 is a singleton.5 The category P = P[1] is called the
groupoid of natural numbers, having as objects the nonnegative integers [0], [1], [2], . . .
and where morphisms n → m are the symmetric group Sn of permutations of the set
[n] = {1, . . . , n} (so in particular [0] is the empty set and S0 is the trivial group) if

5 Other possible choices for V are the category ModR of modules over a ring R (if R is a field,
we call a Modk-species just a k-linear species, see [84] for a comprehensive introduction)
or the category Top∗ of pointed topological spaces equipped with the smash product [121,
3.6.2] (for applications to algebraic topology, see e.g. [91]; for a broader notion of operad
cf. the excellent readings [22,124]).
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n = m, and the empty set otherwise. As such, P is the skeleton of the groupoid of finite
sets Bij, the category having objects the finite sets A,B, . . . and morphisms A→ B the
set of all bijections between A and B (so, in particular, if A and B do not have the same
cardinality, Bij(A,B) is empty). Note that Bij is the core (=larger subcategory that is
a groupoid) of the category of finite sets. The (commutative, i.e. strictly symmetric)
monoidal structure on P is given by sum of natural numbers, i.e. [n]⊕ [m] = [n+m],
the unit is [0] and permutations act by juxtaposition. In the following we denote a
species as F : P→ Set and call an element s ∈ F[n] a species of F-structure.

Corollary 1. The universal property of P entails that there is an isomorphism of
categories P ∼=

∑
n Sn where the right-hand side is the coproduct in the category of

groupoids and as a consequence Spc ∼=
∏

n Set
Sn where each SetSn is the category of

left Sn-set.

As a consequence, species can equivalently be presented as a symmetric sequence
{Xn | n ≥ 0} of sets, each of which is equipped with a (left) Sn-action Sn×Xn → Xn.

Definition 2 (Change of base for species). Let V be a monoidal category monadic
over Set such that the functor K : V→ Set is lax monoidal (for example the forgetful
functor U : ModR → Set); then there is a base change adjunction F∗ : Spc ⇄ V-Spc :
U∗ induced through the free-forgetful F ⊣ U . For example, if F : Set→ Modk is the free
k-vector space functor, we denote k⟨L⟩ the k-linear species F∗L induced by a Set-species
L.

Example 1 (Some important species). Many more examples of species can be found in
[11, Ch. 1].

es1) Given an object V of V, there is a unique symmetric monoidal V-species cV sending
[n] to V ⊗n. If V = I is the monoidal unit, cI is called the ‘exponential species’ E.
The exponential Set-species is just the constant functor at the terminal object.6

es2) The species ℘ of subsets sends an n-set A to the 2n-set of all its subsets; a per-
mutation acts in an obvious way, since a bijection σ : A → A induces a bijection
σ∗ : 2A → 2A by functoriality.

es3) The species L of total orders7 sends [n] to the set of total orders on [n], identified
with the set |Sn| of bijections of [n], over which Sn acts by left multiplication.

es4) The species S of permutations sends each finite set [n] into the (carrier of the) sym-
metric group on n letters, Sn. The symmetric group acts on itself by conjugation:
if τ ∈ Sn, σ : Sn → Sn is the map sending τ 7→ στσ−1.

es5) The species Cyc of oriented cycles sends a finite set [n] to the set of inequivalent
(i.e. not related by a cyclic permutation) ways to sit n people at a round table, or
more formally, in the set of cylic orderings of {x1, . . . , xn}. As Cyc[n] identifies with
the set of cosets Sn/Cn (Cn the cyclic group), one derived that |Cyc[n]| = (n− 1)!.

6 In a serendipitous choice, the notation E for this species hints at the same time that E is
the species of sets, or éspèce des ensembles, and that it’s an analogue of the exponential
function, as ∂E[n] = E[n], for the derivative functor of Remark 4.

7 Elsewhere customarily called the species of linear orders, but this might conflict with linear
as in ‘k-linear’ if k is a ring.
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The category of species exhibits a fairly rich structure that we now review.8

Proposition 1. Spc is the free cocompletion under small colimits [125, Remark 2.29]
of P; as such, for every cocomplete category D there is an equivalence of categories

Cat(P, D) ∼= {colimit preserving functors Spc→ D} (1)

given by ‘Yoneda extension’ [85, Ch. 2].

Proposition 2. Following [2,57,71] Spc is the (nonfull) subcategory of analytic end-
ofunctors of Set, i.e. those endofunctors F : Set → Set such that, if J : Bij → Set is
the tautological functor [n] 7→ [n], the left Kan extension of FJ along J coincides with
J . The usual coend formula [88] to express LanJFJ entails that F is analytic if and
only if it acts on a set X as

FX ∼=
∫ n

F [n]×Xn (2)

i.e. if and only if F admits a ‘Taylor expansion’
∑∞

n=0 F [n]X
n

n! ; hence the name. The

series gF (X) =
∑∞

n=0 |F [n]|X
n

n! ∈ QJXK, where |S| denotes the cardinality of a set, is
called the (exponential) generating series [11, §1.2] of the species F .

Proposition 3 ([86, §5]). Spc is the free cocomplete 2-rig on a singleton; as such,
given a cocomplete 2-rig R there is an equivalence of categories

R ∼= {colimit preserving 2-rig functors Spc→ R} (3)

In [86, §5] we observe how to construct the free cocomplete (symmetric) 2-rig on a
given category A it suffices to take the free (symmetric) monoidal category on A, call it
P[A] and subsequently, its free cocompletion Cat(P[A]op,Set). The notion of morphism
of 2-rigs is given indirectly as pseudomorphism for the particular ‘doctrine of D-rigs’
in study.

This last characterization requires a more fine-grained analysis of the various monoidal
structures Spc can be equipped with.

Remark 1. The category Spc of species carries

ms1) the Cartesian (or Hadamard [4, 8.1.2]) monoidal structure, the product of species
being taken pointwise; the monoidal unit for the Hadamard product is the species
that is constant at the singleton. Dually, the coCartesian monoidal structure, the
coproduct of species being taken pointwise (together with the structure above, Spc
is ×-distributive and forms a ‘biCartesian closed’ category in the sense of [122]);
however, its biCartesian structure is not very interesting, compared to

8 An important additional universal property we do not need in our analysis is that Spc is a
Grothendieck topos, precisely the classifying topos [89, Ch. VIII] for P-torsors, where P is
the category P regarded as a groupoid.
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ms2) the Day convolution (or Cauchy [4, 8.1.2]) monoidal structure, given by the uni-
versal property of Spc as the free monoidally cocomplete category on P [62] as the
coend

(F ⊗Day G)[p] :=

∫ mn

F [m]×G[n]× P(m+ n, p) (4)

(Note in passing that the ⊗Day-monoidal structure is symmetric and closed with
an internal hom {−,−}Day.) In particular, P is monoidally equivalent to the sub-
category of Spc spanned by representables, and thus the ⊗Day-monoidal unit is
y[0].

ms3) the substitution (or plethystic, cf. [95,103]) monoidal structure, defined for F,G :
P → Set as (F ◦ G)[p] =

∫ n
Fk × G⊗Dayk[p], where G⊗Dayk := G ⊗Day G ⊗Day

· · ·⊗DayG (k times). The ◦-monoidal unit is the representable y[1]. Note in passing
that the ◦-monoidal structure is not symmetric, and only right closed, i.e. only
◦G has a right adjoint.

All these monoidal structures are tightly related:

Remark 2. The Hadamard and Day convolution product give Spc the structure of a
duoidal category in the sense of [34]: (Spc,×,⊗Day) and (Spc,⊗Day,×) [4, 8.13.5] are
both duoidal; positive species, i.e. those for which F [∅] = ∅ form a duoidal category
under substitution and Hadamard product, [B.6.1, ibi ]. All these results extend to V-
species. The plethystic structure makes Spc monoidally equivalent to the category of
analytic functors under composition [2,71].

Remark 3. As an additional demonstration of how tightly the Hadamard, Cauchy and
plethystic structures are related, observe how all these identification between combi-
natorial species hold [11]:

ci1) the species of subsets ℘ : A 7→ 2A is isomorphic to E⊗Day E;
ci2) the species S of permutations of es4 is isomorphic to the substitution E ◦ Cyc;
ci3) more generally, for every species F the substitution E ◦ F sends A to a r-partition

(U1, . . . , Ur) of A and picks a F-structure on each Ui.

An important structure enjoyed by Spc that we will analyze in this paper is that of a
differential 2-rig : the notion was introduced in [86] as a unifying language for instances
of a monoidal category (C,⊗, I) where each A ⊗ , ⊗ B is cocontinuous and an
endofunctor ∂ is ‘linear and Leibniz’ in the following sense.

As it is true in all presheaf categories, the tensor product ⊗Day preserves colimits
separately in each variable (i.e., each A⊗Day and ⊗DayB is cocontinuous); moreover,
the following is true.

Remark 4 (The differential structure of Spc). The category Spc of species is equipped
with a ‘derivative’ endofunctor ∂ : Spc → Spc (cf. [11, §1.4 and passim]; ∂F is the
species sending [n] to F [n⊕ [1]]) such that

d1) ∂ is ‘linear’, i.e. it preserves all colimits (in particular, coproducts);
d2) ∂ is ‘Leibniz’, i.e. it is equipped with tensorial strengths τ ′ : ∂A⊗ B → ∂(A⊗ B)

and τ ′′ : A⊗ ∂B → ∂(A⊗B) such that the unique map induced by τ ′, τ ′′ from the
coproduct of their domains is invertible, to the effect that ∂ ‘satisfies the Leibniz
rule’

∂A⊗B +A⊗ ∂B ∼= ∂(A⊗B). (5)
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Definition 3. Every monoidal category (K,⊗) equipped with an endofunctor ∂ that
satisfies the same three properties is called a differential 2-rig (for the doctrine of col-
imits) in [86].

In the case of species, the proof that ∂(F ⊗Day G) ∼= ∂F ⊗Day G+ F ⊗Day ∂G appears
in Joyal’s original papers introducing combinatorial species. Moreover, it was known
to Joyal that ∂ satisfies the ‘chain rule’ in that ∂(F ◦G) ∼= (∂F ◦G)⊗Day ∂G; cf. [86,
Theorem 5.18] for a conceptual proof of this latter result. To a very large extent, the
combinatorial differential calculus of species agrees with the classical differential calcu-
lus of formal power series. In particular, observe that g∂F (X) is the formal derivative
d

dX gF (X) of the series in Proposition 2.

Remark 5. Part of the fairly rich structure enjoyed by the differential 2-rig (Spc,⊗, ∂)
can be explained with the fact that ∂ also preserves all limits: ∂F is precomposition
with the ⊕ [1] functor; but then, call ∆ = ⊕ [1], the left (resp., right) adjoint to
∂ is the left (resp., right) Kan extension along ∆, which exists since Spc is a presheaf
category.9

We just proved the following result:

Theorem 1. The derivative functor ∂ : Spc→ Spc sits in a triple of adjoints L ⊣ ∂ ⊣
R, and L,R are obtained as Kan extensions.

This fact was first observed in [110], where the explicit descriptions

LF : A 7→
∑

a∈A F [A \ {a}] RF : A 7→
∏

a∈A F [A \ {a}] (6)

are given in terms of F as a functor Bij→ Set, and some useful combinatorial identities
expressing L∂,R∂, ∂L, ∂R in simpler terms are also analyzed.

Notation 2 (Scopic 2-rig). We introduce the terminology scopic10 2-rig to refer to
a differential 2-rig (R,⊗, D) whose derivative functor D has both a left and a right
adjoint.

Algebraic structures and co/algebras in Spc. We end the section reviewing
the characterization of monoids, comonoids and Hopf monoids in Spc. First of all,
Hadamard co/monoids are simply co/monoid-valued species, i.e. functors F : P→ Mon
or P→ Comon into the categories of monoids and comonoids in Set (and this result ex-
tends to V-species, a Hadamard monoid in V-Spc being just a functor P→ Mon(V)).

Cauchy co/monoids (i.e. co/monoids for the Day convolution, whence our prefer-
ence for calling them Day co/monoids) are far more interesting, as well as substitu-
tion co/monoids (the latter are called co/operads and have an extremely long history,

9 An alternative proof of the same fact is in terms of the Day convolution structure: one
sees that there is a natural isomorphism ∂F ∼= {y[1], F}Day where {−,−}Day is the internal
hom, and y[1] = P(1,−) the corepresentable functor on [1]; now, certainly {y[1],−}Day

must have y[1] ⊗Day − as left adjoint, but since in every presheaf category representables
are tiny objects, ∂ must also be cocontinuous, hence a left adjoint by the special adjoint
functor theorem.

10 From the Proto-Indo-European root *speḱ-, derived the Latin word speciēs and the Greek
verb σκοπέω, related to the verb ‘to see’.

https://orcid.org/0000-0003-3052-465X


Automata and coalgebras in categories of species 9

excellent surveys geared towards the different areas of Mathematics using them are
[22,32,77,91]). The first remark on ⊗Day-co/monoids is simply that there aren’t any
among representables.

Remark 6. There are no nontrivial representable ⊗Day-magmas, for the simple reason
that the subcategory spanned by representables is monoidally equivalent to (P,⊕), and
in the latter a binary operation [n] ⊕ [n] = [2n] → [n] can exist only if 2n = n. For a
similar reason, there are no nontrivial k-ary cooperations [n]→ [n]⊕k.

Remark 7. It is worth to explicitly spell out what a ⊗Day-monoid (M,µ, η) in Spc must
be made of:

– the unit consists of a species morphism η : y[0] → M which by Yoneda is just an
element e ∈M [0].

– the multiplication splits into a cowedge µpq : M [p]×M [q]→M [n] for each pair of
integers p, q such that p+ q = n, natural for the action of symmetric groups, under
the shuffling maps Sp×Sq → Sp+q sending a pair of permutations (σ, τ) to the one
acting as σ on {1, . . . , p} and as τ on {p+ 1, . . . , p+ q}.

The following is implied joining [2, Example 2.3] and adapting [4, 8.16]: in particular,
the species L of Example 1 has a convenient universal property.

Proposition 4. ([11, p. 7], [4, §8.1]) The species L of total orders is the free monoid
on y[1]. The species L+ of nonempty linear orders is the free semigroup on y[1]. Thus,

L ∼=
∑

n≥0 y[n] L+
∼=

∑
n≥1 y[n]. (7)

(A terminological note. [4] calls ‘positive’ what we tend to dub ‘nonempty’, considering
species as monadic over graded vector spaces.) In fact, in a k-linear setting (k a field)
the structure of L is way richer: k⟨L⟩ (cf. Definition 2; it’s the species assigning to [n]
the k-vector space having the set L[n] as a basis) carries the structure of a Hopf monoid.
Following Remark 7, the monoid structure of L arises as a cowedge L[p]×L[q]→ L[n]
for every p + q = n, defined as (l, l′) 7→ l · l′ where the later is the ordinal sum or
concatenation of the linear orders l on [p] and l′ on [q]; ordinal sum is an associative
operation, equivariant under the shuffling maps. The unit is the only element of L[1].

The Hopf monoid structure of k⟨L⟩ is extensively studied and described in [4, §8.5].

Co/algebras for endofunctors of Spc This subsection studies algebras and coalge-
bras for a few interesting endofunctors M defined over Spc. Despite its naturality, this
idea is seemingly unexplored thus far.

It becomes particularly intriguing to explore the interactions between M and the
structures on Spc mentioned in Remark 1, Remark 4; clearly, this is essential to study
(M,B)-automata, defined in Definition 5 as a pullback along M -algebras.

Definition 4 (The category SpcL). The category SpcL is, up to equivalence, de-
scribed as any of the following:

l1) the category of endofunctor algebras for y[1]⊗Day ;
l2) the category of endofunctor coalgebras for ∂;
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l3) the Eilenberg–Moore category of the monad L⊗Day ;
l4) the coEilenberg–Moore category of the comonad {L,−}Day.

These identifications follow from the freeness of L and the general fact that whenever
F ⊣ G is an adjunction between endofunctors, Alg(F ) ∼= coAlg(G).

Representing objects of SpcL as Eilenberg–Moore algebras is particularly con-
venient, as a L-module is the same thing as a ⊗Day-monoid homomorphism L →
{F, F}Day, which since L is the free monoid generated on y[1], amounts to a single
element of {F, F}Day[1]; equivalently, if one uses characterization l1 above, a structure
of type y[1]⊗Day on [n] consists of a choice of point in [n], together with an F -structure
on the complement of that point.11

Remark 8. Limits and colimits in SpcL are computed exactly as in Spc, i.e. pointwise
(since Spc is monadic over SetN =

∏
n≥1 Set), given that SpcL is at the same time a

category of algebras (for L⊗Day , hence limits are created in Spc) and of coalgebras
(for the right adjoint comonad {L,−}Day, hence colimits are created in Spc). We just
proved that

Lemma 1. The terminal object of SpcL is the exponential species of Example 1, whence
the isomorphism ∂E ∼= E characterizing E as a ‘Napier object’ of the differential 2-rig
of species.12

Armed with these explicit computations, we can attempt to unveil the structure of the
category SpcL in any of the equivalent forms given in Definition 4 as a building block
of MlySpc(L, ).

We now collect some examples of: a species that has only a few structures of L-
algebra (=structures of ∂-coalgebra); a species that has at least uncountably many; a
species with no such structure as a Set-species, that however becomes interesting when
‘changing base’ (cf. Definition 2).

Example 2. Structures of ∂-coalgebra on the species of subsets of es2 correspond to
Sn-equivariant maps θ : ℘ → ∂℘ and using the Leibniz rule over the isomorphism
℘ ∼= E ⊗Day E of [11, §1.3, Eq. (33)] one gets that θ : ℘ → ℘ + ℘. Using elementary
group theory on the components θA one sees that there are only four such θ: embedding
a subset U ⊆ A in the first summand, embedding a subset U ⊆ A in the second
summand, embedding U c = A ∖ U in the first summand, embedding U c = A ∖ U in
the second summand.

Example 3. [11, Example 9, (37)] yields ∂L ∼= L⊗Day L, whence a natural choice for a
coalgebra structure s : L → ∂L, given a finite set A, is specified on components sA in
terms of a choice of decomposition A = I ⊔J and a splitting of the total order on A as
a total order on I and a total order on J . This choice is made independently for every
finite set A, so this argument shows that there is an uncountable infinity of coalgebra
structures on L.

11 One can read off the fact that these descriptions are equivalent from the end defining
{F, F}Day[n], cf. [77, Equation (2.6)].

12 The rationale behind the terminology is that, evidently, ‘exponential object’ already has a
different, conflicting meaning.
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Example 4. Let Cyc be the species of cyclic orders, Example 1.es5; then, we imme-
diately get ∂Cyc ∼= L from manipulating generating series. A ∂-coalgebra structure
on Cyc now would be a natural transformation ϑ : Cyc → L, and no such map can
exist by cardinality reasons: since Cyc[n] identifies with the coset space Sn/Zn, over
which Sn acts transitively, an Sn-equivariant map ϑn : Cyc[n]→ Sn must be surjective
(the translation action Sn × Cyc[n] → Cyc[n] : (σ, τ) 7→ στ is also transitive). Yet,
|Sn| = n! > (n− 1)! = |Cyc[n]|.

Example 5. Let S be the species of permutations of Example 1.es4; from Remark 3
it follows that ∂S ∼= S ⊗Day L, so that ∂-coalgebra structures (i.e. Eilenberg–Moore
algebras for L⊗Day ) correspond under adjunction to monoid homomorphisms L→
{S,S}Day.

3 Abstract automata in Spc

Let K be a category and F : K → K be an endofunctor that we think of as a
categorification of a dynamical system and its iterates F, F 2, F 3, . . . , Fn : K → K,
cf. [3]. We also fix an object B ∈K (an ‘output’ object, cf. [25,51]).

Definition 5. We define the category MlyK(F,B) and MreK(F,B) as the following
strict 2-pullbacks in Cat respectively:

MlyK(F,B) //

��

F/B

U

��

MreK(F,B) //

��

K/B

U ′

��
Alg(F )

V
// K Alg(F )

V
// K

(8)

where Alg(F ) is the category of endofunctor algebras of F , F/B the comma category
of arrows FX → B, and K/B the comma category of arrows X → B (and U, V, U ′, V ′

are the most obvious forgetful functors).

Remark 9 (Limits and colimits in categories of automata). If F admits a right adjoint
R, and K is complete and cocomplete, so are MlyK(F,B) and MreK(F,B); this can
be easily argued using an argument in [88, V.6, Ex. 3] and the fact that U,U ′ create
colimits and connected limits, together with the fact that F/B ∼= K/RB; then, the
terminal object of MlyK(F,B) is

∏
n≥1 R

nB and the terminal object of MreK(F,B) is∏
n≥0 R

nB.

Remark 10 (Accessibility of categories of automata). Repeatedly applying the com-
pleteness theorem of the 2-category Acc of accessible categories [90, Ch. 5] one can
prove that if K is locally presentable (say for a regular cardinal κ) and F is κ-accessible,
then MlyK(F,B),MreK(F,B) are both locally presentable (but in general, for a much
higher cardinal κ).

Remark 11. A particular instance of Remark 9 is when K is monoidal and F : K→K

is the tensor product A⊗− for a fixed object of K. Then, we shorten MlyK(F,B) and
MreK(F,B) to MlyK(A,B) and MreK(A,B) and we observe that
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– if K has countable sums, Alg(F ) = Alg(A⊗−) is the Eilenberg-Moore category of
the monad A∗ ⊗− where A∗ :=

∑∞
n=0 A

⊗n is the free monoid on A;

– ifK is monoidal closed, complete and cocomplete, thenMlyK(A,B) andMreK(A,B)
are complete and cocomplete; if K is locally κ-presentable, so are MlyK(A,B)
and MreK(A,B) (generally, for a larger cardinal κ′ ≫ κ). The terminal object in
MlyK(A,B) is [A+, B], A+ being the free semigroup on A (resp., in MreK(A,B)
it’s [A∗, B], A∗ being the free monoid).

Unwinding Definition 5 in this particular case, the typical object d,s

E
of MlyK(A,B) is

a span as in the left of the following diagram, and the typical object d,s

E
of MreK(A,B)

a (disconnected) diagram as in the right

d,s

E
: E A⊗ E

doo s // B d,s

E
: E A⊗ E,E

doo s // B. (9)

Remark 12. Remarks 9, 10, 11 all apply to K= Spc considered with the Day convolu-
tion structure (and in fact to all V-Spc when V is complete, cocomplete and monoidal
closed). In particular, for every fixed combinatorial species B : P → Set we can eas-
ily study MlySpc(L,B) = MlySpc(y[1], B) as the category having objects the diagrams

E
d←− y[1] ⊗Day E

s−→ B, or more concisely as the category obtained as the pullback

SpcL ×Spc (Spc/B) where SpcL is as in Definition 4.

Note that this is equivalent to the category of coalgebras for the functor E 7→ ∂B×∂E.
From this coalgebraic characterization, we deduce that

Proposition 5. The terminal object of MlySpc(L,B) is the ‘ω-differential limit’13 of
B defined as

∏
n≥1 ∂

nB ∼=
∏

n≥1{y[1]⊗Dayn, B}Day
∼=

{∑
n≥1 y[n], B

}
Day

= {y[1]+, B}Day (10)

where again y[1]+ is the free semigroup on y[1]: given Proposition 4, y[1]+ ∼= L+.

Remark 13. Consider two endofunctors F : K → K, G : H → H. If P : K → H

is a functor equipped with an intertwiner π : GP ⇒ PF we can define a functor
π∗ : Alg(F ) → Alg(G) by application of P and precomposition with π, a functor
K/B → H/PB in the obvious way, and in turn a unique functor

ϖ∗ : MlyK(F,B) // MlyH(G,PB) (11)

13 The name is chosen in analogy with the notion of ω-limit set of a dynamical system f :
X → X defined over a metric space, see e.g. [40, Def. 1.12], where the (ω-)limit set of x
under f is defined as

ω(x, f) =
⋂

n∈N {fk(x) : k > n},
the topological closure of the ‘eventual f -orbits’ of x.
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Automata and coalgebras in categories of species 13

3.1 Fibrational properties of the Mly construction

The fact that Definition 5 is functorial in (F,B) motivates us to examine the fibrational
properties of such associations (F,B) 7→ MlyK(F,B) and (F,B) 7→ MreK(F,B). This
yields total categories where all dynamics and all outputs can be considered simulta-
neously and coherently. The entire section takes place under the assumption that K is
locally presentable.

Definition 6. The total Mealy 2-category Mly is defined as follows:

– the objects are triples (K;F,B) where F : K→K is an endofunctor of a category
K, and B an object of K;

– the morphisms (P, π, u) : (K;F,B) → (H;G,B′) are triples where P : K→ H is
a functor, π : GP ⇒ PF is an intertwiner natural transformation between F and
G and u : PB → B′ is a morphism;

– 2-cells γ : (P, π, u) ⇒ (Q, θ, v) consist of natural transformations γ : P ⇒ Q
compatible with the intertwiners π, θ in the obvious sense, and such that v◦γB = u.

From such a domain Mly, sending (K, F,B) to MlyK(F,B) results in a strict 2-functor
Mly→ Cat (Cat is the 2-category of categories, functors, natural transformations).

It is, however, rarely needed to vary the domain K of the automata in study (but
cf. Remark 18 for an instance of when this ‘change of scalars’ might be required). A
simpler (=lower-dimensional) approach is convenient if we are content with keeping K

fixed.

Definition 7 (The total categories of automata). Definition 5 entails at once
that the correspondence (F,B) 7→ MlyK(F,B) is a (pseudo)functor of type MlyK :
Cat(K,K)op×K→ Cat, i.e. a pseudo-profunctor Cat(K,K) 7−→K from which we can
extract a span

Cat(K,K) MlyK

poo q // K (12)

such that p is a fibration, q is an opfibration, p-Cartesian lifts are q-vertical and q-
opCartesian lifts are p-vertical, whose tip MlyK we call the total Mealy category.

Similar considerations allow to construct the total Moore category MreK from the
pseudo-profunctor (F,B) 7→ MreK(F,B), and obtain a two-sided fibration Cat(K,K)←
MreK→K, the total Moore category.

Remark 14. Unwinding the definition, it is easy to establish how reindexings of the total
Mealy and Moore fibration act. In particular, given α : F ⇒ G a natural transformation
between left adjoints F ⊣ R and G ⊣ Q, and a morphism f : B → B′, the reindexing
functor MlyK(α, f) : MlyK(G,B) → MlyK(F,B

′) preserves all colimits –and thus,
in the blanket assumption of presentability of K, is a left adjoint; however, it fails to
preserve limits (even terminal objects).14

14 It is probably interesting to devise under which conditions the canonical map
MlyK(α, f)

(∏
n≥1 Q

nB
)
→
∏

n≥1 R
nB′, is well behaved in some sens (for example, un-

der mild conditions that there exist at least one ‘point’ in its domain, the map is a split
epi).
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If K is monoidal its tensor functor ⊗− : K×K→K now curries to the ‘left regular
representation’ λ : K→ Cat(K,K) : A 7→ A⊗− of K on itself, and as a consequence,
we can pullback the total Mealy fibration and the total Moore fibration to obtain the
left leg of the diagram

Mly⊗
K

//

��

MlyK

��
Kop ×K

λop×K

// Cat(K,K)op ×K

(13)

which gives rise to the monoidal Mealy (two-sided) fibration

K Mly⊗
K

q⊗ //p⊗
oo K (14)

(Similar considerations define Mre⊗K, but we refrain from doing so for some technical
reasons that make Mly⊗

K a better-behaved object, cf. [15].) In fact, the terminology is
chosen to inspire the fact that we have restricted the total Mealy category to the case
where F -actions are monoidal and hint at the following result.

Proposition 6. The monoidal Mealy fibration is a monoidal two-sided fibration, in
the sense of [134,118], and the monoidal product interfiber is given by componentwise
tensor product,(

A,B; d,s

E )
⊗
(
A′, B′,

d′,s′
E′ )

=
(
A⊗A′, B ⊗B′;

d⊗d′,s⊗s′
E⊗E′ )

(15)

Theorem 3 ([76], [112, Def. 1] rephrased). If K is Cartesian monoidal, the pro-
functor Kop×K→ Cat obtained from (14) carries the structure of a (pseudo)promonad,
and it gives rise to a bicategory MlyK whose hom-categories are precisely the MlyK(A,B).

The terminology introduced so far gives us enough leeway to introduce our first main
theorem:

Theorem 4. Let (K,⊗, ∂) be a differential 2-rig; then the total categories of the mono-
idal Mealy and Moore fibrations are themselves differential 2-rigs for a universal choice
of derivative functor ∂̄ : Mly⊗

K → Mly⊗
K such that the projection functors p⊗, q⊗ in

(14) are (strict) morphisms of differential 2-rigs.

Corollary 2. The total category Mly⊗
Spc obtained coupling Definition 7, (13), and

Proposition 6 is a differential 2-rig such that ∂̄ commutes with all colimits that are
preserved by ∂.

Proposition 7. The category Mly⊗
Spc is locally presentable, so by the special adjoint

functor theorem ∂̄ has a left adjoint; in fact, more is true:

– the fibration of (14) is accessible (and cocomplete, hence locally presentable) in the
sense of [90, 5.3.1], i.e. the total category Mly⊗

Spc is locally presentable, the projec-
tion ⟨p, q⟩, all reindexing functors are accessible, and the pseudofunctor associated
to the fibration preserves filtered colimits.
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– the ∂̄ functor is also continuous, (Mly⊗
Spc,⊗Day, ∂̄) is a scopic differential 2-rig.

The following lemma splits the verification that MlyK, defined in Definition 7, preserves
filtered colimits in both components into two parts. The first part is a straightforward
consequence of the fact that Alg( ) preserves filtered colimits, in the sense that if J is
a λ-filtered category, Alg(colimJFi) ∼= limJAlg(Fi). The key result allowing us to prove
the second part is the fact that R as described in Equation 6 also preserves filtered
colimits, hence for every filtered diagram, one has T/colimJBi

∼= colimJ

(
T/Bi

)
.

Lemma 2. For every fixed output object B ∈K, the functor MlyK(−, B) preserves fil-
tered colimits. For every fixed dynamics F : K→K, the functor MlyK(F,−) preserves
filtered colimits.

4 Differential and co/monadic dynamics

Besides usual monoidal automata, which have a distinguished differential flavour by
the above remarks, one can exploit the other adjunction ∂ ⊣ R where ∂ sits and look
at categories MlySpc(∂,B) of differential automata, where dynamics are induced by the
subsequent derivatives of a state object E, ∂E, . . . , ∂nE = E(n), . . . .

Then, from every triple of adjoints L ⊣ ∂ ⊣ R, ‘monad-comonad’ and ‘comonad-
monad’ adjunctions L∂ ⊣ R∂ and ∂L ⊣ ∂R arise. One can then put the categories
MlySpc(L∂,B) and MlySpc(∂L,B) under the spotlight using the language of Section 3.

This is, respectively, what we do in Section 5 below after we address the problem
in more generality.

We want to study categories MlyK(T,B) of (T ⊣ S)-automata where T is a left
adjoint monad, and dually, categories MlyK(Q,B) of (Q ⊣ R)-automata where Q is a
left adjoint comonad.

In the case of a left adjoint monad, several technical results can be used to make
the description of the categories MlyK(T,B) easier:

– [18, 4.3.2] if T is a left adjoint monad, with S as right adjoint comonad, its
Eilenberg–Moore category KT is cocomplete, with colimits preserved by the for-
getful functor; in fact more is true:

– [18, 4.4.6] if T is a left adjoint monad, with S as right adjoint comonad, colimits
in KT are created by U , which in fact is comonadic and KT identifies with the
category of coEilenberg–Moore S-coalgebras.

The first general observation is completely elementary but already useful: con-
sidering that co/monads admit co/unit natural transformations to/from the identity
functor, and given the functoriality of MlyK(−, B), we get canonical choices of functors

MlyK(idK, B) // MlyK(Q,B) MlyK(T,B) // MlyK(idK, B) (16)

One can immediately prove by inspection that

Remark 15. The category MlyK(idK, B) is the category of coalgebras for the functor
×B.
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Arguing again by functoriality, the monad structure on the functor T specifying the
dynamics yields an augmented simplicial object [41], [129, 8.6]:

MlyK(T , B)• =

(
MlyK(idK, B) MlyK(T,B)

η∗
oo µ∗ // MlyK(T

2, B)
(Tη)∗
oo

(ηT )∗oo //
// . . .

)
oo
oo

oo
(17)

obtained feeding the bar resolution of T to the functor MlyK(−, B).
Dually, the cobar resolution of a left adjoint comonad Q yields an augmented cosim-

plicial object

MlyK(Q, B)• =

(
. . .

//
// MlyK(Q

2, B) σ∗ //oo
oo

oo
MlyK(Q,B)

(ϵQ)∗
oo

(Qϵ)∗oo
MlyK(idK, B)

)
ϵ∗

oo (18)

Definition 8 (Bar and cobar Mealy complexes). Both constructions are natural
in the output object B, hence the above construction sets up functors MlyK(Q)• : K×
∆ → Cat and MlyK(T )• : K× ∆op → Cat. We refer to these as the bar complex of
T -automata and the cobar complex of Q-automata.

Remark 16. Let K be locally presentable. Given that µ∗ : MlyK(T,B)→ MlyK(T
2, B)

acts by precomposition with µ, sending d,s

E
to dµE ,sµE

E
a swift application of the

adjoint functor theorem yields a right adjoint µ∗.

Remark 17 (On monadic automata). It is reasonable to describe Eilenberg–Moore15

Mealy automata, refining the pullbacks in Definition 5 by using the forgetful from
KT (the Eilenberg–Moore category of T ) instead of Alg(T ), and obtaining categories
µMlyK(T,B) and µMreK(T,B); in this case, some of the observations listed here carry
over:

– µMlyK(idK, B) is just the slice K/B, so the free-forgetful adjunction FT : K ⇄
KT : UT induces a ‘pulled-back’ adjunction µMlyK(T,B) ⇄ T/B.

– Let S, T be monads on K. Whenever a morphism of monads λ : T ⇒ S in the
sense of [8, §6.1] is given, the induced (colimit-preserving) functor KS → KT

(cf. [ibi, Thm. 6.3]) induces in turn a (colimit-preserving) functor µMlyK(S,B)→
µMlyK(T,B).

Remark 18. Working in the more restrictive case of Eilenberg–Moore automata is,
however, rather unrewarding for a variety of reasons: first of all, there is the trivial
remark that as soon as a carrier E has a structure a : TE → E of T -algebra, its
‘dynamics’ is pretty trivial, as a must be a split epi with a privileged right inverse ηE ;

thus, the composition s◦ηE ‘knows everything’ about the evolution of d,s

E
. Second, the

conditions for a natural transformation to induce functors between Eilenberg–Moore

15 The ‘Moore’ of ‘Moore automaton’ and the Moore of ‘Eilenberg–Moore’ are two different
people; the notion of ‘Eilenberg–Moore Moore automaton’ makes perfect sense as a category
MreK(T,B) arising as a pullback KT ×K K/B. However, we leave Eilenberg–Moore Moore
automata out of this note.
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categories are fairly more imposing, and third, the morphisms inducing an analogue of
(17),(18) are simply not available.

Something can be said, however, if we work ‘interfiber’ using Definition 6. A monad
morphism in the sense of [117] induces a monad Ŝ on KT so that the forgetful UT :
KT →K is an intertwiner, hence leveraging on Definition 6 we can induce a functor

MlyKT (Ŝ, (B, b)) // MlyK(S,B). (19)

Dually, one can try to render the free functor FT : K → KT into the Kleisli cate-
gory of T strong monoidal for a monoidal structure on KT ; this will yield functors
MlyK(S,B) → MlyKT

(Š, FTB). The matter is investigated in the second part of [51]
when F = A ⊗ . For example, consider K monoidal and with countable sums pre-
served by the tensor; then, every oplax monoidal monad T : K→ K lifts a monoidal
structure on KT and one can then consider KT -valued F -machines, cf. [51, Prop. 30].

Remark 19 (On the proper choice of output objects). The construction of Definition 5
depends not only on F , but also on an output object B, usually thought as a ‘space

of responses’ the machine d,s

E
can give as output. The choice of what B best models

a given problem has to be made each time according to the nature of the problem
itself. However, one is almost always led to consider choices of B that are ‘spaces of
truth values’, like a Heyting or Boole algebra, or spaces of probabilities, like the closed
unit interval [0, 1]. The co/completeness of MlyK(F,B) and MreK(F,B) established in
Remark 9 entails that all algebraic structures (=all essentially algebraic theories) can
be interpreted in such categories, and the nature of Spc as a presheaf topos entails that
the construction of an object of internal real numbers is more or less straightforward.
In particular,

– Hadamard Heyting/Boole algebra objects are just species B : P→ Set which factor
through the subcategory Heyt or Bool, the simplest case being the constant species
B at the booleans B = {0 < 1}, with trivial action of each Sn (B is the subobject
classifier of Spc; another example of a Boolean algebra object in Spc is the species
℘ of subsets of Example 1.es2);

– regarding Spc as a presheaf topos, it is easy to determine that the NNO, the object
of integers, and of rationals, and of internal Dedekind reals [89, §VI.1] can be
constructed as constant functors cN, cZ, cQ, cR at natural, integers, rationals and
reals in Set.

5 L∂- and ∂L-algebras, the fourfold way

Remark 20 (On the structure of L∂ and ∂L). Rajan [110] provides explicit formulas
for the monad and comonad associated to L ⊣ ∂ ⊣ R. Let F : P → Set be a species.
Then,

– L∂F acts as y[1]⊗Day ∂F; a structure of type L∂F on a finite set A chooses a point
of A, and an F-structure on the complement of that point.

– R∂F acts as A 7→
∏

a∈A F[(A ∖ {a}) ⊔ {•}], i.e. as A 7→ FAA; a structure of type
R∂F on a finite set A chooses an F-structure on A for every a ∈ A. With a similar
reasoning,
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– ∂LF = ∂(y[1]⊗Day F) is the functor F+L∂F;16 Note in particular that the unit of
the monad ∂L is the first coproduct injection.

– ∂RF acts as A 7→ F[A]A × F[A] = R∂F[A]× F[A].

Both the following claims follow at once from the definition (and leave the question of
when a generic scopic 2-rig admits a Euler derivation open).17

Remark 21 (The Euler derivation on Spc). The functor L∂ = y[1]⊗Day∂ is a derivation
in the sense of [86], and furthermore a left adjoint (with right adjoint R∂), hence a
colimit-preserving derivative functor.

Armed with these explicit descriptions, we can attempt to unveil the structure of
the categories Alg(L∂), Alg(∂L), as building blocks for the category MlySpc(L∂,B),
MlySpc(∂L,B). A thorough analysis of co/algebra structures for such interesting end-
ofunctors of Spc seems to be missing from the existing literature. Rajan [110] goes
as close as determining in painstaking detail the monad and comonad structures on
∂L, ∂R,L∂,R∂, but doesn’t seem to provide a characterization for their endofunctor
or Eilenberg–Moore algebras, or even for the (much easier, and somewhat more in-
spiring) bare endofunctor algebras. As one would expect from the adjunction relations
L∂ ⊣ R∂ and ∂L ⊣ ∂R the structures of L∂-algebras (=R∂-coalgebras) and ∂L-algebras
(=∂R-coalgebras) are tightly related. The following computations all follow a general
argument, given Remark 20 a ∂L-algebra structure on a species F consists of a pair
[ uv ] : F + L∂F → F of maps u : F → F and v : ∂F → ∂F of endomorphisms, one for
F and one for ∂F .

Example 6. A ∂L-algebra structure on the exponential species E reduces to a pair
u : E → E and v : LE → E, which in turn reduces to another endomap of E, given
how E is a Napier object. Then, ∂L-algebra structures on E are representations of
the free monoid N⟨d, c⟩ (cf. [53,54,55]) on 2 generators d, c over the set E[1] (because
endomaps of E are in bijection with elements of E[1], by Yoneda). For set species,
this must be trivial, for linear species this amounts to a ‘character’ for the monoid
representation N⟨d, c⟩.

Example 7. For the species L of linear orders, a ∂L-algebra map is a map L⊗L→ L,
since

L+ L∂(L) = L+ y[1]⊗Day L⊗Day L (20)

but then L + y[1] ⊗Day L ⊗Day L = L ⊗Day (1 + y[1] ⊗Day L), and the fact that 1 +
y[1] ⊗Day L ∼= L is exactly the universal property satisfied by L as initial algebra of
1 + y[1]⊗Day .

16 This gives rise to the evocative formula: [∂, L] = ∂L−L∂ = 1, i.e. to the canonical commu-
tation relation between position and momentum (up to a sign); in the language of virtual
species [69,70,132,133] and [11, §2.5] such an equation can be made completely formal. As
for its meaning, hanc marginis exiguitas non caperet, but see Problem 1 below.

17 The differential operator Υ =
∑n

i=1 xi
∂

∂xi
in Rn is called ‘Euler homogeneity operator’,

cf. [35, p. 296]; another name for the same operation, ‘numbering derivation’, comes from
Physics where if Xn represents something like a state of n bosons, like photons in a laser,
then the differential operator X · D takes Xn to nXn, where the coefficient ‘counts’ or
‘numbers’ the of bosons.

https://orcid.org/0000-0003-3052-465X
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Example 8. A similar line of reasoning leads to the characterization of ∂L-algebra
structures on the species of cycles, Example 1.es5: since ∂Cyc ∼= L, structures of ∂L-
algebras are pairs, Cyc→ Cyc and L→ L of endomorphisms.

Example 9. For the species S of permutations of Example 1, a ∂L-algebra structure
consists of a pair [ uv ] : S+ L∂S → S, where v can in turn be simplified into S⊗Day

(1 + y[1]⊗Day L) ∼= S⊗Day L using Example 5.

6 Conclusions and future work

Problem 1. LetK be a strict 2-category with all finite weighted limits. Consider objects
X,B ∈ K in a diagram of the following form:

X
idK

// X X
f
oo

f
// X B

b
oo (21)

The Vaucanson limit [59]18 obtained from (21) consists of the limit obtained (cf. [28,78])

– the inserter X
u←− I(f, idX)

u−→ X of the left cospan;

– the comma object X
v←− f/b

q−→ B of the right cospan;
– the strict pullback I(f, idX)×X (f/b) of u, v.

If K is the 2-category of categories, functors, and natural transformations, Vaucanson
limits recover the categories MlyK(A,B) when B = 1 is the terminal category and b is
an object therein.

Formal theory of Mealy automata is then the study of Vaucanson objects in K. One
can define analogues forMlyK(A,B),MreK(A,B) enriched over a generic monoidal base
W in the sense of [18, Ch. 6], [79], for example a quantale [113,26] like [0,∞]op, so that
there is a metric space Mly(X,d)(f, b) [81,21,61] associated to every nonexpansive map
f : X → X and point b ∈ X. This begs the question: what is this theory, and how can
it profit from being studied via discrete dynamical methods? Can it be related with
fixpoint theory as classically intended in [46]?

Problem 2. The canonical commutation [∂, L] = ∂L − L∂ = 1 valid in Joyal’s virtual
species suggests how L acts as a ‘conjugate operator’ to ∂. Compare this with the
analogue relation [x · , d

dx ] = 1 valid in the ring Cω(R) of analytic functions on, say,
the real line [27, Ch. 5], [29]. Is it the case that there is a still undiscovered ‘categori-
fied Greenfunctionology’ introducing a ‘Heaviside distribution’ Θ with the property
that the colimit of F weighted by Θ is a solution of the differential equation ∂G = F

on species, i.e. ∂
(∫X

Θ(X, )× F [X]
)
∼= F? Compare this with the well-known in-

tegral equation d
dx

(∫
Θ(x− t)f(t)dt

)
= f(x) for the Heaviside function, and cf. [23]

where Day sketched a categorified theory of Fourier transforms (upper and lower trans-
forms, Parseval relations, etc.) for categories enriched over a ∗-autonomous base V [9],
generalizing Joyal’s categories of analytic functors. We intend to pursue the matter,
captivated by its compelling aesthetic beauty.
18 Jacques de Vaucanson (∗1709–†1782) was, besides the inventor of the modern lathe and of

automatic loom, the creator of sophisticated and almost lifelike mechanical toys such as the
‘flûteur automate’ and the ‘canard défécateur ’. The mechanical duck appeared to have the
ability to eat kernels of grain, and to metabolize and defecate them.
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10. Bergeron, F.: Une combinatoire du pléthysme 46(2), 291–305. https://doi.org/https:
//doi.org/10.1016/0097-3165(87)90007-0

11. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial species and tree-like structures.
No. 67 in Encyclopedia of Mathematics and its Applications, Cambridge University
Press, Cambridge (1998). https://doi.org/10.1017/CBO9781107325913

12. Bergeron, F., Reutenauer, C.: Combinatorial resolution of systems of differential equa-
tions III: a special class of differentially algebraic series. European Journal of Combina-
torics 11, 501–512 (1990). https://doi.org/10.1016/S0195-6698(13)80035-2

13. Betti, R., Kasangian, S.: A quasi-universal realization of automata. Università degli Studi
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14. Betti, R., Kasangian, S.: Una proprietà del comportamento degli automi completi. Uni-
versità degli Studi di Trieste. Dipartimento di Scienze Matematiche
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70. Joyal, A.: Règle des signes en algèbre combinatoire. CR Math. Rep. Acad. Sci. Canada
7(5), 285–290 (1985)

71. Joyal, A.: Foncteurs analytiques et especes de structures. In: Combinatoire énumérative,
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