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Abstract. Conflict-free replicated data types (CRDTs) are distributed6

data structures designed for fault tolerance and high availability. CRDTs7

have historically been taxonomized into operation-based (or op-based)8

CRDTs and state-based CRDTs. The notion that state-based and op-9

based CRDTs are equivalent is often appealed to in the literature. In10

particular, verification techniques and results for one kind of CRDT are11

often said to be applicable to the other kind, thanks to this equiva-12

lence. However, while there are general algorithms for constructing a13

state-based CRDT from a given op-based CRDT and vice versa, what it14

means for one kind of CRDT to emulate another has never been made15

fully precise. In this paper, we model CRDT systems as transition sys-16

tem coalgebras, and argue that emulation can be understood formally in17

terms of various weak simulations between the coalgebras of the original18

and emulating CRDT systems. As a simple corollary, we deduce which19

properties are preserved by the emulation algorithms, thus closing a gap20

in the CRDT literature.21
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1 Introduction23

In distributed data storage systems, data replication is a ubiquitous mechanism24

for guarding against machine failures and ensuring that data is physically close25

to far-flung clients. Informally, replication takes an object and copies it over n26

sites, or nodes, with each replica acting as an independent copy of the original27

object. With replication comes the challenge of ensuring that replicas remain28

(more or less) consistent with one another, especially in the face of inevitable29

network partitions and clients who demand “always-on” access to data. The ideal30

of consistency for such a replicated system is linearizability [18], under which31

clients cannot tell whether they are interfacing with the original object, or the32

replicated system. Unfortunately, linearizability is impractical to implement —33

indeed, systems that prioritize high availability of data must necessarily do so at34

the expense of linearizability [13, 14].35

The quest for an optimal point in the availability/consistency trade-off space36

has led to the development of conflict-free replicated data types (CRDTs) [43,37

35, 34], which are data structures designed for replication and high availability.38



CRDTs sacrifice linearizability in favor of a weaker strong convergence prop-39

erty [43], which says that replicas that have received and applied the same set40

of updates will agree in state, regardless of the order in which those updates41

were received and applied. When coupled with a guarantee of eventual delivery42

of updates to replicas, strong convergence ensures that replicas will eventually43

come to agree. In the last decade, CRDTs have been an active area of research44

in programming languages and verification communities, with considerable at-45

tention paid to the formal specification and verification (of various properties,46

but especially strong convergence) of CRDT designs [9, 45, 15, 12, 25, 31, 24, 32,47

33], with recent work moving toward automated verification [30, 10] and even48

synthesis of correct-by-construction CRDTs [22].49

In their pioneering work on CRDTs, Shapiro et al. [43] taxonomize CRDTs50

into state-based CRDTs, in which replicas apply updates locally and periodically51

broadcast their local state to other replicas over the network, and operation-based52

(or op-based) CRDTs, in which every state-updating operation is broadcast and53

applied at each replica.3 In state-based CRDTs, the states that a replica can take54

on must be elements of a join-semilattice, and a replica receiving an update from55

a remote replica will apply the update by taking the least upper bound (join)56

of its local state and the received update. Op-based CRDTs, on the other hand,57

only require concurrent operations to commute, but rely on stronger ordering58

guarantees (in particular, causal broadcast [8, 7]) from the underlying network59

transport mechanism. Both the state-based and op-based approaches result in60

strong convergence, the defining characteristic of CRDTs.61

Most work on CRDT specification and verification focuses on either state-62

based [45, 12, 31, 44, 33, 22] or op-based [15, 30, 25, 24, 32] CRDTs exclusively.63

The justification for this choice is that state-based and op-based CRDTs can64

emulate each other. Shapiro et al. [43] give general algorithms by which one may65

construct a state-based CRDT out of a given op-based CRDT, and vice versa.66

However, Shapiro et al. stop short of formally defining a notion of emulation67

and proving that their construction satisfies it. Yet the notion that state-based68

and op-based CRDTs can emulate each other is frequently appealed to in the69

literature. For instance, Nagar and Jagannathan [30], in their work on verification70

of op-based CRDTs, write that “our technique naturally extends to state-based71

CRDTs since they can be emulated by an op-based model,” and Laddad et72

al. [22], in their work on synthesis of state-based CRDTs, write that they “can73

always be translated to op-based CRDTs if necessary.” Hence this emulation74

notion is “load-bearing” and therefore deserving of being made precise.75

In this paper, we seek to close this gap in the CRDT literature and formalize76

the notion of emulation. To that end, we give a simple transition system model77

of CRDT systems, modeling the network and interactions between replicas. This78

model can be understood from the perspective of universal coalgebra [37, 21].79

Given an endofunctor F : C → C in some category C, F -coalgebras are pairs80

3 More recently, Almeida et al. [3] introduce delta state CRDTs, an optimization of
traditional state-based CRDTs in which only state changes, rather than entire states,
must be disseminated over the network.



(X,h) of an object X ∈ C and a morphism h : X → FX. The idea is that the81

endofunctor F encapsulates the generic behavior of a system. This simple ab-82

straction has proven to be remarkably general, capable of modelling systems such83

as deterministic and non-deterministic automata, Mealy machines [36], prob-84

abilistic systems [5] and higher-order languages [16] by varying the choice of85

category C and endofunctor F , yet powerful enough to be the foundation of a86

unifying theory of bisimulation and coinduction. It is through this unifying the-87

ory of coalgebra that we can reason coinductively about emulation of CRDTs.88

Our contributions are (1) to demonstrate that the operational semantics of a89

CRDT system can be modeled by an appropriate transition system (and, there-90

fore, by a coalgebra), and (2) to formalize precisely what is meant by emulation91

of CRDTs in terms of weak simulations between coalgebras. Our results give92

researchers working on CRDTs a rigorous way to think about equivalence of93

state-based and op-based CRDTs: in particular, properties that transfer from94

one kind of CRDT to the other are precisely those properties that are preserved95

by weak simulation relations.96

The rest of this paper is organized as follows. After giving background on97

CRDTs (Section 2), we present a semantics for a system of CRDT replicas and98

make the straightforward observation that our semantics is a particular kind99

of coalgebra (Section 3). We then review the formal notion of simulations in100

our setting, and argue how it can be adapted to characterize emulation (Sec-101

tion 4). We justify this choice of simulation by reasoning that emulation should102

be about relating the observable behaviors of the original system and the emu-103

lating system. We have kept the emulation algorithms of Shapiro et al. intact,104

albeit with minor modifications. This results in two emulation mappings, one in105

each direction of emulation. Each emulation mapping corresponds to two simu-106

lation arguments, which we argue coinductively. We conclude with a discussion107

of related work (Section 5).108

2 Background on CRDTs109

In this section, we recall the definitions of op-based and state-based CRDTs,110

based on those of Shapiro et al. [43]. CRDTs are networks of communicating111

replicas, but the definitions of Shapiro et al. specify only the interface that each112

individual replica exposes to the network, as this fully determines the semantics,113

i.e., the behavior, of the CRDT network as a whole. Here, what we refer to as114

a system or a network is a collection of non-byzantine processes, which we call115

replicas, that communicate with each other through an underlying asynchronous116

communication protocol. Later, in Section 3, we will recast these definitions in117

terms of coalgebras.118

CRDTs are constructed in such a way as to guarantee strong eventual consis-119

tency [43, §2.2] of replicas, the most salient aspect which is of strong convergence,120

which says that replicas that have received the same (unordered) set of updates121

have equivalent state.122



Assumption 1. In what follows, we fix a set A of commands and a set B of123

observables. We also assume that CRDT systems consist of n ∈ N replicas.124

2.1 Op-based CRDTs125

The definition below formalizes operation-based CRDTs, originally introduced126

by Shapiro et al. [43, §2.4]. We refer to them simply as op-based CRDTs.127

Definition 2 (Op-based CRDT). An op-based CRDT is a tuple (S, s0,M, u, t, e, q),128

consisting of:129

– A set S of local states.130

– An initial state s0 : S.131

– A set M of messages.132

– An update map u : S ×A → S.133

– A prepare-update map t : S ×A → M .134

– An effect-update map e : S ×M → S.135

– A query map q : S → B.136

The core principle behind op-based CRDTs is that replicas locally (and inde-137

pendently of the other replicas) execute commands, which are then propagated138

to the rest of the network via broadcast messages. The mechanism works as fol-139

lows: suppose a given replica i, with a local state of si ∈ S, executes a command140

a ∈ A, thus transitioning to the state s′i = u(si, a). Replica i then prepares a141

message m = t(si, a), which is broadcast to all other replicas. The broadcast142

happens asynchronously, meaning messages are received by other replicas in an143

indeterminate order. Finally, the replicas may “consume” the message m via the144

effect-update map e, e.g., replica j applies e(sj ,m). In this case, we say that the145

message m is delivered at replica j. The query function q exposes the observable146

part of a replica’s local state to the external world.147

Notation 3. Often we will consider applying sequences of messages. The fol-148

lowing notation is thus useful. Let M∗ denote the set of strings of messages149

(where (−)∗ Kleene star). Let ε be the empty string and · the usual string con-150

catenation. ∀w ∈ M∗, define ew : S → S inductively by setting eε(s) = s, and151

em·w(s) = ew(e(s,m)) for all m ∈ M .152

Remark 4 (The role of causality in op-based CRDTs). An important detail153

about op-based CRDTs is that they must be implemented on top of a causal154

broadcast mechanism. Causal broadcast ensures that when a broadcast message155

m is delivered at a replica j, any message sent before m (in the specific sense156

of Lamport’s happens-before partial order [23]) will have already been delivered157

at j. (Messages not ordered by the happens-before relation, on the other hand,158

may be delivered in arbitrary order.) Protocols for causal message delivery are159

well known in the distributed systems literature [6, 39, 8, 7].160

We express the causal broadcast requirement as follows: if M is the set of all161

messages in a given execution of a CRDT system, then (M,≺) is a partial order,162



and ≺ is called a causality relation, which encodes Lamport’s happens-before163

relation. Intuitively, if m′ ≺ m, then the sending of message m′ is a potential164

“cause” for the sending of message m. Furthermore, we say that m and m′ are165

concurrent (written m ‖m′) if ¬(m ≺ m′) ∧ ¬(m′ ≺ m). As an axiom, op-based166

CRDTs require that the effects of concurrent messages commute. That is, in167

Notation 3,168

∀s ∈ S.m ‖m′ =⇒ em·m′(s) = em′·m(s) (1)

Example 5. A typical example of an op-based CRDT is the grow-only set or169

G-Set. Fix a set of objects Σ, and define the local states as elements s ∈ P(Σ).170

Initially, s0 = ∅ and there is only one type of command: add(e) where e ∈ Σ.171

Then we define172

– prepare-update: t(s, add(e)) = (add, e)173

– effect-update: e(s, (add, e)) = s ∪ {e}174

– update: u(s, add(e)) = e(s, t(s, add(e)))175

Queries enable clients to check if elements are in the set, meaning B = 2Σ176

and q : P(Σ) ∼= 2Σ . Furthermore, all updates commute, so causal delivery is177

in fact not necessary for this particular CRDT. However, more sophisticated178

op-based CRDTs such as add-remove sets, do require causal broadcast to ensure179

strong convergence.180

2.2 State-based CRDTs181

Next, we define state-based CRDTs [43, §2.3], in which local replica states form182

a join-semilattice.183

Definition 6 (State-based CRDT). A state-based CRDT is a tuple ((S,t), s0, u, q),184

consisting of:185

– A join-semilattice (S,t).186

– An initial state s0 : S.187

– An update map u : S → SA that is furthermore inflationary, i.e.188

s ≤ u(s, a) for all s ∈ S and a ∈ A.

– A query map q : S → B.189

As is standard, we write x ≤ y whenever x t y = y.190

A state-based CRDT operates as follows: as in op-based CRDTs, replicas191

may locally and independently execute commands a ∈ A. The synchronization192

mechanism, however, is radically different; whereas an op-based CRDT system193

uses a causal broadcast mechanism, in a state-based CRDT system any replica i194

may initiate a synchronization exchange with another replica j. In this exchange,195

replica i sends its entire local state si to replica j through the network. Upon196

arrival of the message (with payload si), replica j joins si with its current state197

sj , i.e. s′j = si t sj . In that case, we say that (the message with payload) si is198

delivered at replica j.199



Example 7. One kind of state-based CRDT with many applications in dis-200

tributed systems is a Lamport clock [23]. The join-semilattice is (N,max : N ×201

N → N), where max takes its usual meaning. The initial state is clock0 = 0. The202

command is simply tick, and the update is defined u(clock, tick) = clock+1.203

Queries compare a given clock to the current clock that is the replica’s internal204

state. Then n replicas are seen as n distributed logical clocks, and may be used205

to track the order of events in a distributed system.206

3 CRDTs, coalgebraically207

In this section, we formalize the behavior of CRDTs as non-deterministic tran-208

sition systems on vectors of replica states. The following definition of a replica209

state covers both state-based and op-based CRDTs.210

Notation 8. We write M : Set → Set for the multiset functor.211

Definition 9 (Replica states). Let M and S be sets, representing resp. messages212

and local states. A replica state is a pair (s, σ) ∈ S ×M(M).213

A replica state (s, σ) represents the runtime information of a single replica,214

which consists of the local state s and its message buffer σ. A vector of replica215

states thus represents the runtime information of a CRDT system; a network of216

replicas. The following definition captures the nature of a CRDT system and is217

independent of whether it is state-based or op-based.218

Definition 10. Global State and Configurations Let E be a set of events and219

S ×M(M) the set of replica states. We say a tuple (xi)i∈n ∈ (S ×M(M))n is220

a global state of n replicas and 〈α, (xi)i∈n〉 ∈ E × (S×M(M))n is an augmented221

global state or configuration.222

Definition 11 (CRDT system). A CRDT system (on n replicas) is a pair223

(R, obs) consisting of a query map obs : S → B and a transition relation224

R ⊆ E × (S ×M(M))n × E × (S ×M(M))n).

Remark 12. CRDT systems form coalgebras in the category Set of sets and225

total functions. In particular, a CRDT system (R, obs) is equivalently the coal-226

gebra227

(h, o⃗bs) : X → P(X)×Bn

where X = E × (S ×M(M))n, o⃗bs = (proj2 ◦ obs)n and y⃗ ∈ h(x⃗) if R(x⃗, y⃗).228

From the coalgebraic perspective, the state space of CRDT systems cor-229

responds to an n-sized vector of replica states, tagged with event-labels; the230

observables are collected by the map obs : S → B, acting on the local state of231

each replica. Recall that our CRDTs are always equipped with such a map.232

Next, for both op-based and state-based CRDTs, we describe the semantics233

of CRDT systems, including how a local replica changes state, and how replicas234

interact with each other.235



3.1 Op-based CRDT system semantics236

Assumption 13. For the purposes of Section 3.1, we assume an op-based CRDT237

(S, s0,M, u, t, e, q).238

We model the behavior of individual replicas in an op-based CRDT using a239

transition relation −→op on replica states. For the op-based CRDT in Assump-240

tion 13, we pick the set of messages in replica states to be M . Specifically for241

op-based CRDTs, commands a ∈ A also generate a message m = t(s, a) ∈ M to242

be broadcast to other replicas. We denote a step that generates message m via243

command a with the notation xi −→op x
′
i ↑ (a,m). The replica semantics of the244

op-based CRDT is given by the following rules:245

s′ = u(s, a) m = t(s, a)

(s, σ) −→op (s
′, σ) ↑ (a,m)

[OpLUpd]

∃m ∈ σ deliverable(s,m) = > s′ = e(s,m)

(s, σ) −→op (s
′, σ \ {m})

[OpLRecv]

(2)

In rule OpLStep, the replica executes a command a ∈ A, generating message246

m and changing the replica’s state accordingly. In OpLRecv, the replica in ques-247

tion delivers a message m ∈ σ, i.e. it executes the underlying command included248

in the message (emap(s,m)) and removes the message from its message buffer.249

We defer discussion of the deliverable(s,m) = > until Remark 16.250

With the above replica semantics in mind, the global semantics of an op-251

based CRDT system models communication between replicas, with computation252

modeled by a transition relation on states augmented with events or actions,253

denoting what sort of computation step took place. More formally, if x, x′ are254

global states and α, α′ are events, then write 〈α, x〉 op〈α′, x′〉 to mean that x255

transitions to x′ via event α′.256

To be precise, we now define the events in op-based CRDT systems.257

Definition 14. For i, j ∈ n, m ∈ M and a ∈ A,258

Eop 3 α ::= > | updi(a,m) | bci(m) | dlvrj←i(m) (3)
where > is a special null event (for initial states), updi(a,m) denotes a local259

update at replica i with command a and emitting message m, bci(m) denotes260

the sending of m from replicas i to all other other replicas j ∈ n, and dlvrj←i(m)261

denotes the delivery of message m at replica j, where the sender is replica i.262

Write α /∈ update to mean α is not an update event. Then we define the263

global transition relation op as follows:264

α /∈ update xi −→op x
′
i ↑ (a,m)

〈α, (x1, .., xn)〉 op〈updi(a,m), (x1, ..., x
′
i, ..., xn)〉

[OpUpdate]

(x′1, ..., x
′
n) = bcastim(x1, ..., xn)

〈updi(a,m), (x1, ..., xn)〉 op〈bci(m), (x′1, . . . , x
′
n)〉

[OpBroadcast]

α /∈ update xi −→op x
′
i

〈α, (x1, ..., xn)〉 op〈dlvrj←i(m), (x1, ..., x
′
i, ..., xn)〉

[OpRecv]

(4)



In our model, transitions taken by each replica can be seen as atomic, local265

computations, and in a CRDT network, replicas perform local computations in266

no particular order. As such, rule OpRecv acknowledges that if a replica can267

take a step individually (by delivering a message via OpLRecv), it can also do268

so inside the network. Local updates at a replica induce a cascade of global269

transitions: when a replica updates its state via command a, it also does so inside270

the network. At the same time, the replica prepares a message m to be emitted271

to the network, and then does so immediately. This is captured by the OpUpdate272

and OpBroadcast rules in the global semantics. Note that the premise α /∈ send273

in OpUpdate and OpRecv requires that broadcast events always follow an update274

event. A broadcast bcastim(x1, . . . , xn) returns the global state (x′1, ...x
′
n), where275

message m is placed in the message buffer of each replica j such that j 6= i.276

We stress that this communication is asynchronous: a message being placed in277

some replica’s message buffer denotes that the message has simply been sent.278

Asynchrony is modeled by the fact that there can be an arbitrary number of279

steps between the sending/reception and the delivery (i.e., consumption) of the280

message.281

Definition 15. Let (xi)i∈n be a global state and α an event. We say a (possibly282

empty) sequence 〈αi, z
i〉i∈k of configurations is a trace of 〈α, (xi)i∈n〉 if283

(〈α, (xi)i∈n〉 op〈α1, z
1〉) ∧ (∀i ≥ 1. 〈αi, z

i〉 op〈αi+1, z
i+1〉).

If all the events (αi)i∈k have a certain form (e.g., αi = dlvrji←li(mi)) we may284

speak of traces of events.285

Remark 16. We now turn to a more precise discussion of the deliverable premise286

in the OpLRecv rule. Recall from Remark 4 that op-based CRDTs are built on287

top of causal broadcast, and that the semantics of a causal broadcast mechanism288

induces a causality relation ≺ where (i.) (M,≺) is a partial order, and (ii.) causal289

broadcast guarantees that messages delivered at each replica are delivered in an290

order consistent with ≺.291

We now show how such a relation ≺ might be obtained in our semantics.292

Let 〈αi, z
i〉i∈k be a trace of initial state 〈>, (s0,∅)i∈n〉 (Definition 15), and take293

the set of events E =
∪

i∈k{αi}, which may be partitioned as E =
∪

i∈n Ei by294

binning events αi based on where they occured (e.g., Ej includes all events of295

the form updj(a), bcj(m) and dlvrj←i′(m)).296

We then define a standard [23] happens-before relation ≺hb as the smallest297

relation on events E satisfying298

– p < q and αp and αq are both events on the same replica (e.g., αp, αq ∈ Ej)299

– αp = bci(m) and αq = dlvrj←i(m); and300

– ∃αr event s.t. αp ≺hb αr and αr ≺hb αq.301

The relation ≺hb is a partial order relation and induces the partial order relation302

≺ on messages: m′ ≺ m ⇐⇒ bci(m′) ≺hb bcj(m). We can understand the303

partial order (M,≺) induced by the causal broadcast mechanism as essentially304

the abstraction of this construction.305



A standard implementation strategy for such a mechanism [6, 7, 8] is to306

have the sender of a message augment the message with causal metadata (for307

instance, a vector clock [27, 11, 40]) that summarizes information about the308

causally preceding messages, and have each replica additionally maintain causal309

metadata as part of its state.310

It is then the job of the causal broadcast mechanism to enforce causal de-311

livery: each dlvrj←i(m) event can only occur if all messages m′ ≺ m in the312

execution have already been delivered to replica j. This is done by inspecting313

the message’s causal metadata and comparing it with the causal metadata in314

the replica’s state to determine whether the message can be safely delivered or315

needs to be buffered for later delivery. We leave the details of the causal deliv-316

ery enforcement mechanism abstract, hiding all causal metadata, and instead317

capture its semantics using the deliverable relation and the partial order (M,≺).318

In particular, deliverable(s,m) = > in the premise of OpLRecv means that319

all messages m′ such that m′ ≺ m have already been delivered at the replica in320

question.321

Remark 17. The replica and global semantics of the op-based CRDT, coupled322

with the query map q : S → B, forms the CRDT system ( op, q) in the sense323

of Definition 11.324

3.2 State-based CRDT semantics325

Assumption 18. For the purposes of Section 3.2, we assume a state-based326

CRDT ((S,t), s0, u, q).327

We proceed analogously to the op-based CRDT case. For the state-based328

CRDT ((S,t), s0, u, q), we pick the set of messages in replica states to be S, as329

we are sending entire internal states to other replicas. The replica semantics is330

given by the following rules:331

a ∈ A s′ = u(s, a)

(s, σ) −→st (s
′, σ)

[StLUpd]

∃s′ ∈ σ
(s, σ) −→st (s t s′, σ \ {s′})

[StLRecv]

(5)

Compared to the op-based case, the semantics are quite similar at a local332

level, only now replicas are not required to broadcast as a consequence of an up-333

date. Delivering a message from another replica is just a join operation. Sending334

a state to another replica is given as a separate step in the global semantics,335

which are given below over the following events.336

Definition 19. For i, j ∈ n, and s ∈ S, and a ∈ A,337

Est 3 α = > | updi(a) | sendi→j(s)| dlvrj←i(s) (6)

where the events are analogous to those in Definition 14, with the caveat that now338

send events are point-to-point rather than broadcasts. Now, for events α ∈ Est,339

we have the rules:340



xi = (s, σ) xi −→st x
′
i x′i = (u(s, a), σ)

〈α, (x1, . . . , xi, . . . , xn)〉 st〈updi(a), (x1, . . . , x
′
i, . . . , xn)〉

[StUpdate]

xi = (si, σi) xj = (sj , σj) x′j = (sj , σj ∪ {si})
〈α, (x1, ..., xj , ..., xn)〉 st〈sendi→j(si), (x1, ..., x

′
j , ..., xn)〉

[StSend]

xj = (sj , σ) xj −→st x
′
j x′j = (sj t s, σ \ {s})

〈α, (x1, .., xj , ..., xn)〉 st〈dlvrj←i(s), (x1, ..., x
′
j , ..., xn)〉

[StRecv]

(7)

The global semantics for state-based CRDT systems are interpreted similarly341

to op-based CRDT systems. The critical difference is that while op-based systems342

are required to broadcast messages as a result of a local update, state-based343

systems need no requirement. The rules StUpdate and StRecv show that that344

replicas which take a step may also take a step inside the network. The rule345

StSend models a spontaneous synchronization connection initiated by replica i346

towards replica j with i 6= j. As we can see from the premise, the internal state347

of xi is placed in the message buffer of replica j. Again, the communication is348

asynchronous, as replica j may consume this message at an arbitrary point in349

the future.350

Remark 20. As with op-based CRDTs, the replica and global semantics of the351

state-based CRDT, coupled with the query map q : S → B, forms the CRDT352

system ( st, q) in the sense of Definition 11.353

Remark 21. The reason for augmenting the state with events, rather than using354

a labeled transition (i.e., using behavior functor P(E ×−)) is because the event355

types Eop and Est in the op-based rules in Equation (4) and state-based rules in356

Equation (7) are not identical up to relabeling. In the weak simulation arguments357

we will present in Section 4, a single labeled event must be simulated by multiple358

other labeled events. To this end, we augment the states with events, thus keeping359

the behavior functor P in both systems. Passing to the following intermediate360

transition system for ( st, qst)-systems is useful for relating events Eop to those361

in Est.362

Definition 22. Set q′ = qst and let E be the set of events given by the syntax363

E 3 α := > | updi(a) | bci(s) | dlvrj←i(s)

where s ∈ S. Then construct a transition system ( 7−→, q′′) by defining ∀α events,364

∀z, z′ ∈ (S ×M(S))n global states,365

1. 〈α, z〉 7−→ 〈updi(a), z′〉 ⇐⇒ ∃α′. 〈α′, z〉 st〈updi(a), z′〉366

2. 〈α, z〉 7−→ 〈dlvrj←i(s), z′〉 ⇐⇒ ∃α′. 〈α′, z〉 st〈dlvrj←i(s), z′〉.367

3. 〈α, z〉 7−→ 〈bci(s), z′〉 ⇐⇒ ∃α′, α1, . . . , αn−1 events, ∃z1, . . . , zn−1 states368

s.t.369

(〈α′, z〉 st〈α1, z
1〉) ∧ (∀j ≥ 1. 〈αj , z

j〉 st〈αj+1, z
j+1〉)

where zn−1 = z′ and each αj = sendi→j(s) s.t. j 6= i ranges over n.370



4 Emulation of CRDTs, coinductively371

Shapiro et al. [43] argue that it is possible for an op-based CRDT to be emulated372

by a state-based CRDT and vice versa. To that end, they provide two trans-373

formations, one that constructs an op-based CRDT given a state-based CRDT,374

and one that constructs a state-based CRDT given an op-based CRDT. The375

translations are given in a precise manner, while the claim that op-based and376

state-based CRDTs emulate each other is left informal. In particular, there is377

no formal definition of “CRDT emulation”; rather, Shapiro et al. argue that378

their constructions preserve the strong eventual consistency (SEC) property of379

the original CRDTs. However, SEC preservation is insufficient for behavioral380

equivalence, since, for instance, a trivial CRDT that does nothing is also SEC.381

To close this gap, we begin this section by first introducing our notion of382

CRDT emulation based on coalgebraic (weak) simulation (Section 4.1). Next, in383

Section 4.2, we show that Shapiro et al.’s translation of state-based CRDTs to384

op-based CRDTs is indeed an emulation in our sense, in that the resulting op-385

based system weakly simulates the state-based system and vice versa. We present386

the opposite direction in Section 4.3. It will become apparent that the two weak387

simulations are non-trivial and underline the differences between state-based and388

op-based CRDTs.389

4.1 Emulation as coalgebraic simulation390

We argue that the suitable notion to capture the relationship between op-based391

and state-based CRDTs is (weak) simulation. We move on to define simulations392

at the level of coalgebras for the endofunctor B = L×P(−) : Set → Set, as our393

CRDT systems are all instances of B-coalgebras (recall Remark 12, Remark 17394

and Remark 20).395

Definition 23 (Simulations). Let (X, 〈ε, h〉) and (Y, 〈ζ, g〉) be coalgebras for396

endofunctor B = L × P(−), for some set of observables L. A simulation of397

(X,h) and (Y, g) is a relation R ⊆ X ×Y such that for all pairs of states x ∈ X,398

y ∈ Y with R(x, y), the following hold:399

1. ε(x) = ζ(y).400

2. If x′ ∈ h(x), then there exists y′ ∈ g(y) such that R(x′, y′).401

If R(x, y), we say that y simulates x. Simulations are closed under arbitrary402

unions: if R and Q are simulations, so is R ∪ Q. The greatest simulation thus403

exists and is the union of all simulations; this relation is known as similarity,404

written as ≲.405

Definition 24 (Weak simulation). Let (X, 〈ε, h〉) and (Y, 〈ζ, g〉) be coalgebras406

for endofunctor B = L× P(−), for some set of observables L, and let g∗ : Y →407

P(Y ) be the reflexive, transitive closure of g : Y → P(Y ). That is, g∗ is the408

least map Y → P(Y ) (w.r.t. pointwise inclusion), satisfying (i) ∀y. g(y) ∈ g∗(y),409

(ii) ∀y. y ∈ g∗(y) and (iii) ∀y, y′, y′′. y′ ∈ g∗(y) ∧ y′′ ∈ g∗(y′) =⇒ y′′ ∈ g∗(y). A410

weak simulation of (X,h) and (Y, g) is a simulation of (X,h) and (Y, g∗).411



Example 25. Let (−→1, obs1) and (−→2, obs2) be two CRDT systems according412

to Definition 11, and let ( ⃗obs1,−→1) : X → L × PX and ( ⃗obs2,−→2) : Y →413

L×PY be the induced coalgebras from Remark 12. Instantiating Definition 24414

to ( ⃗obs1,−→1) and ( ⃗obs2,−→2), a relation R ⊆ X × Y is weak simulation if the415

following is true for all x ∈ X, y ∈ Y with R(x, y):416

obs1(x) = obs2(y) ∧ (∀x. x −→1 x′ =⇒ ∃y′.y −→∗2 y′ ∧R(x′, y′)).

This says that two states x, y are related if they produce the same observables417

and the system −→2 can “match” the transitions of x, in potentially many steps.418

Notation 26. Our coalgebras are transition systems where the state-space has419

been augmented with events, e.g., 〈α, x〉 ∈ E1 ×X and 〈β, y〉 ∈ E2 × Y . We say420

a pair (≈, Q) ⊆ (E1 × E2) × (X × Y ) is a (weak) simulation if the relation R421

defined by (〈α, x〉, 〈β, y〉) ∈ R ⇐⇒ α ≈ β ∧ (x, y) ∈ Q is a (weak) simulation.422

4.2 Emulation of state-based CRDTs by op-based CRDTs423

Shapiro et al. provides a simple way to turn a state-based CRDT to an op-based424

CRDT. Given given any state-based CRDT425

c = ((S,t), s0, u, q), (8)

we can construct the op-based CRDT F(c) by426

c
F7−→ (S, s0, S, u, u,t, q). (9)

Indeed, the tuple (S, s0, S, u, u, q) is an instance of Definition 2. Applied to427

CRDTs c and F(c), the semantics introduced in Section 3.1 and Section 3.2 yield428

resp. the CRDT systems ( op, q) and ( st, q) which, according to Remarks429

17 and 20, induce the coalgebras430

( op, q⃗) : Eop × (S ×M(S))n → P(Eop × (S ×M(S))n)×Bn

( st, q⃗) : Est × (S ×M(S))n → P(Est × (S ×M(S))n)×Bn.

We now state the equivalence between CRDT systems c and F(c) in terms431

of two weak simulations: one of ( op, q⃗)〉 by ( st, q⃗) and another one in the432

opposite direction.433

First, construct the intermediate system as in Definition 22, whose transition434

arrows are denoted with 7−→. The next theorem and its subsequent corollary are435

essentially direct, so we omit their proofs.436

Theorem 27. Let ∆ ⊆ Eop× (S×M(S))n×Eop× (S×M(S))n be the diagonal437

relation, i.e.,438

∆ = {〈α, (xi)i∈n〉, 〈α, (xi)i∈n〉 | α ∈ Eop ∧ (xi)i∈n ∈ S ×M(S))n}.

Relation ∆ is a simulation of ( op, q⃗) and ( 7−→, q⃗).439



Corollary 28. There is a weak simulation Q1 of ( op, q⃗) and ( st, q⃗) arising440

from ∆ which contains the initial states 〈>, (s0,∅)i∈n〉 ∈ Eop × (S × M(S))n441

and 〈>, (s0,∅)i∈n〉 ∈ Est × (S ×M(S))n.442

Q1 is a weak simulation of ( op, q⃗) and ( st, q⃗), but it is not a weak443

simulation of ( st, q⃗) and ( op, q⃗), as it is too strict a relation for this444

purpose. There is, however, a larger relation that is so. To define it, we use the445

following auxiliary definition.446

Definition 29. Let F(c) = (S, s0, S, u, u,t, q) be the aforementioned op-based447

emulator. We say a state (si, τi)i∈n of F(c) is synchronizable if448

∀i, j ∈ n,C ⊆ τi. ∃D ∈ τj .
⊔

({si} ∪ {sj} ∪ C) =
⊔

({sj} ∪D). (10)

Roughly, a state being synchronizable means that any replica can “catch up”449

with any other replica by delivering one or more messages from its buffer. The450

next proposition foreshadows how being synchronizable plays a role during a451

weak simulation.452

Proposition 30. Let (xi)i∈n be a synchronizable state of the op-based CRDT453

system ( op, q) induced by F(c).454

The following is true: if 〈α, (xi)i∈n〉 ∗
op〈α′, (x′i)i∈n〉, and α′ = bcj(m) or455

α′ = dlvrj←k(m), then (x′i)i∈n is synchronizable. Otherwise α′ = updj(a), and456

〈updj(a), (x′i)i∈n〉 op〈bcj(m), z〉

where 〈bcj(m), z〉 is synchronizable.457

We are now ready to construct our weak simulation relation. First, we define458

a relation Q2 ∈ (S ×M(S))n × (S ×M(S))n on the state spaces of ( st, q⃗)459

and ( op, q⃗) as follows:460

Q2 =
{
((si, σi)i∈n, (si, τi)i∈n) |

∀i, j ∈ n. ( ∀s ∈ σi. ∃B ⊆ τi. si t s =
⊔

({si} ∪B))

∧ (si, τi)i∈n is synchronizable
}
.

(11)

The intuition behind the Q2 relation is that when (x, y) ∈ Q2, the coalgebraic461

state y is “ahead” of x in terms of synchronization and, furthermore, it is always462

in the optimal synchronization state where all internal replica states converge, at463

the same internal state, after delivering all messages. Next, we let ≈ ⊆ Est ×Eop464

be a relation on events, defined as follows:465

(i). updj(a) ≈ bcj(m) for a ∈ A, m ∈ M ,466

(ii). dlvrj←i(s) ≈ dlvrj←i(s′) for s, s′ ∈ S,467

(iii). sendj→i(s) ≈ α, for all α ∈ Eop.468

Theorem 31. Relation (≈,Q2) is a weak simulation of ( st, q⃗) and ( op, q⃗).469



Proof sketch. Let (xi)i∈n = (si, σi)i∈n and (yi)i∈n = (si, τi)i∈n such that for a470

pair of events β ∈ Est, α ∈ Eop, ((xi)i∈n, (yi)i∈n) ∈ Q2 and β ≈ α. By Definitions471

23 and 24, we have to show472

q⃗((xi)i∈n) = q⃗((yi)i∈n) (12)
473

〈β, (xi)i∈n〉 st〈β′, w〉
=⇒ ∃α′, z. 〈α, (yi)i∈n〉 ∗

op〈α′, z〉 ∧ α′ ≈ β′ ∧ (w, z) ∈ Q2.
(13)

Equation (12) is immediate, as q⃗ only depends on the internal states si, which474

are the same in both replica states xi and yi for all i. For (13), we proceed by475

case distinction on the global semantics of state-based systems (7). We identify476

and sketch three cases on the transition 〈β, (xi)i∈n〉 st〈β′, w〉.477

1. (β′ = updj(a)). There are two sub-cases: if we have the sub-case α /∈ update,478

then simulate with the transitions479

〈α, (yi)i∈n〉 op〈updj(a), (s′i, τ ′i)i∈n〉 op〈bcj(s′j), z〉,

where s′j = u(sj , a) in the previous step. Then updj(a) ≈ bcj(m) and by480

Proposition 30, z is synchronizable. We thus have to show ∀i ∈ n, i 6= j,481

∀s ∈ σi. ∃B ⊆ τi ∪ {sj}. si t s =
⊔

({si} ∪B). (14)

∀s ∈ σj . ∃B ⊆ τj . u(sj , a) t s =
⊔

({u(sj , a)} ∪B). (15)

Statement (14) immediately holds because of ((xi)i∈n, (yi)i∈n) ∈ Q2. State-482

ment (15) follows from the fact that ∀s ∈ S, s t u(s, a) = u(s, a) in con-483

junction with ((xi)i∈n, (yi)i∈n) ∈ Q2. This closes the sub-case. For the other484

sub-case that α = updk(a′), we must first complete the update-broadcast485

cycle (recall they are essentially atomic in the semantics 4), then perform486

the simulating transitions above, and apply the same argument. This close487

the second sub-case.488

2. (β′ = sendj→i(s)). If α ∈ update, then finish the update-broadcast cy-489

cle yielding configuration 〈α′, z〉 where α′ is a broadcast event, and z is490

synchronizable by Proposition 30. Then simulate with the reflexive step491

〈α′, z〉 ∗
op〈α′, z〉. The remaining details follow similarly to the previous492

case. Note that if α /∈ update then the reflexive step alone suffices.493

3. (β′ = dlvrj←i(s)). We need to simulate by delivering the right sequence494

of messages. It thus suffices to only deal with the α /∈ update sub-case,495

since finishing the update-broadcast cycle would yield buffers τ ′i which would496

contain the buffers τi as subsets had we not done this. Hence the proof for497

α /∈ update implies the other subcase α ∈ update.498

The event dlvrj←i(s) implies s ∈ σj , so from the hypothesis, there is a499

subset B ⊆ τj so that sj t s =
⊔
({sj} ∪ B). Therefore, there is a (possibly500

empty) trace (Definition 15) 〈αi, z
i〉i∈k from 〈α, (yi)i∈n〉 s.t. the (αi)i∈k are501

all deliver events on replica j, and thus correspond to the subset B ⊆ τj . One502

can show that the resulting global state zk is synchronizable, and replica j503

in zk agrees with replica j in w. The simulating transitions is thus implied504

by the trace 〈αi, z
i〉i∈k.505



4.3 Emulation of op-based CRDTs by state-based CRDTs506

The next translation is from op-based to state-based CRDTs, which is a slightly507

modified version of the one in Shapiro et al. [43]. The original translation takes a508

given op-based CRDT o = (S, s0,M, uop, t, e, qop) and translates it into a state-509

based CRDT with replica state space S × Pfin(M) × Pfin(M). The emulating510

replica state is thus a triple (s,H,D) of an internal state, a set of known messages511

H, and a set of delivered messages D. Merges on the emulating system work by512

creating a new set of known messages on the merged replica via set-theoretic513

union. Finally, updating is implemented in terms of some recursive function d514

which, apart from applying a given operation, also delivers qualified messages515

that are still in H.516

In our modified translation, we observe that it is sufficient to simply use the517

sets H ∈ Pfin(M) as the emulating states, since one can recover the states s518

on-demand by computation (thus also eliminating the need for D). The idea519

is that, since M is equipped with the causal relation ≺ (a partial order - see520

Remark 16), H essentially represents an equivalence class of strings of messages521

m1m2 · · ·m|H|, which all result in the same end state s when applied to the522

initial state s0.523

Op-based to state-based CRDT translation. We show how the aforementioned H524

sets arise in our semantics.525

Let (S, s0,M, uop, t, e, qop) be an op-based CRDT, and ( op, qop) its cor-526

responding system, taking 〈>, (s0,∅)i∈n)〉 as the initial configuration. Following527

Remark 16, any trace 〈αi, z
i〉i∈k of 〈>, (s0,∅)i∈n)〉 (Definition 15) yields a par-528

tially ordered (by causality) set E of events with partition (Ei)i∈n.529

Then there is an obvious map Ei 7→ Hi ∈ Pfin(M) which projects the event530

sets down to finite message sets, inheriting a partial order ≺ (we assume unique531

events project to unique messages), and thus also the concurrency relation ‖.532

That is, m ‖m′ ⇐⇒ (m 6≺ m′) ∧ (m′ 6≺ m). We call Hi the history for replica533

i, and they can be thought of as denoting states si ∈ S by the following lemma.534

Lemma 32. Let (M,≺) be the partial order given by causality, and let s0 ∈ S535

be a local state. Then, there is a well-defined map [[·]] : Pfin(M) → S.536

Proof sketch. Define the equivalence relation w ≡e w′ ⇐⇒ ew = ew′ (Nota-537

tion 3). By Remark 4 and Remark 16, for all m,m′ ∈ M if m ‖m′ then necessarily538

m ·m′ ≡e m
′ ·m. We note the following:539

1. There is a map H 7→ L(H), where L(H) ∈ Pfin(M
∗) is the set of linear540

extensions of ≺ on H s.t. ∀w,w′ ∈ L(H), we have w ≡e w
′.541

2. Hence, there is a map µ : Pfin(M) → M∗/ ≡e which sends H
µ7→ [w]≡e

, and542

an injection g : M∗/ ≡e→ M which selects a representative w′ ∈ [w]≡e
.543

3. Finally, we define [[H]] = ew′(s0) where w′ = (g ◦ µ)(H).544

The map [[·]] is well-defined in the sense that it does not depend on choice of545

w′ ∈ µ(H).546



Corollary 33. Let [[·]] : Pfin(M) → S be given by Lemma 32, and let H ∈547

Pfin(M) be a partially ordered set. For all m ∈ M ,548

(∀m′ ∈ H. (m′ ≺ m) ∨ (m′ ‖m)) =⇒ [[H ∪ {m}]] = e([[H]],m).

Proof sketch. If w is any linear extension of (H,≺), and if m′ ≺ m or m′ ‖m549

holds ∀m′ ∈ H, then any linear extension of w′ of H ∪ {m} belongs to the550

equivalence class [w ·m]≡e
, hence ew′(s0) = ew·m(s0) = e([[H]],m).551

In all that follows, we assume for simplicity fixed message set (M,≺) and552

initital state s0. We can apply Lemma 32 to (M,≺) and s0 to obtain an inter-553

pretation function [[·]] : Pfin(M) → S and construct the state-based CRDT G(o)554

as follows:555

o
G7−→ ((Pfin(M),∪),∅, ust, qst), (16)

where ust(H, a) = H ∪{t([[H]], a)} and qst(H) = q([[H]]). The fact that G(o) em-556

ulates o is a straightforward corollary of Lemma 32. In particular, definition (16)557

induces the CRDT systems ( op, qop) and ( st, qst), which weakly simulate558

one another.559

The weak simulation argument consists of several steps. First, we construct560

an intermediate op-based CRDT system (−→, q) which behaves the same as the561

original system ( op, qop), except now each replica state additionally carries562

not only state si, but also the partially ordered (by causality) set of di of delivered563

messages such that [[di]] = si (Lemma 32) holds as an invariant. Second, we also564

pass from ( st, qst) to an intermediate system ( 7−→, q′) via Definition 22, also565

with histories Hi as the replica states.566

We then show a weak simulation from (−→, q) to ( 7−→, q′) which maintains567

the equality di = Hi, hence [[Hi]] = si.568

We now construct the intermediate (−→, q) for the ( op, qop) system. De-569

fine the map570

o 7→ (S × Pfin(M), (s0,∅),M, u, t′, e′, q) (17)

where t′((s, d), a) = t(s, a), and e′((s, d),m) = (e(s,m), d∪{m}), and u(z, a) =571

e′(z, t′(z, a)). Finally, set q(s, d) = qop(s). This induces an intermediate op-based572

system (−→, q) with the same set of events Eop as ( op, qop) system induced573

from o.574

The next lemma expresses that (−→, q) has the same behavior as ( op, qop).575

Lemma 34. The forgetful map576

f : Eop × (S × Pfin(M)×M(M))n → Eop × (S ×M(M))n

f(α, (si, di, σi)i∈n) = 〈α, (si, σi)i∈n〉

is a coalgebra homomorphism, hence its graph a bisimulation.577

Lemma 32 and Corollary 33 establishes the relation between the si states578

and the delivered messages di, summarized as a lemma.579



Lemma 35. Define Reach(α, z) = {〈α′, z′〉 | 〈α, z〉 −→∗ 〈α′, z′〉} as the set580

of reachable states from 〈α, z〉. Then the predicate P ⊆ Eop × (S × Pfin(M) ×581

M(M))n defined by582

P = {〈α, (si, di, σi)i∈n〉 | ∀i ∈ n. si = [[di]]} ∩ Reach(>, (s0,∅,∅)) (18)

is non-empty and an invariant of the intermediate system (−→, q), where [[·]] :583

Pfin(M) → S is given by Lemma 32.584

Lemmas 34 and 35 allow us to denote a replica state si by a set of delivered585

messages di under the op-based semantics. This informs us that the desired sim-586

ulation is that the state-based semantics can equivalently represent the delivered587

set di, though perhaps with multiple steps, and ignoring event labels.588

To that end, apply Definition 22 and pass from ( st, qst) to the interme-589

diate system ( 7−→, q′) (so that our events E correspond to the broadcasting and590

delivering of histories of messages).591

Our weak simulation argument is dependent on the relation ≈ ⊆ Eop × E592

on events, which we promptly define. Let m ∈ M and define H(m) ∈ Pfin(M)593

as the finite downward closed set of messages wrt ≺ with m at the top.4 We594

inductively define ≈ ⊆ Eop × E as follows:595

updi(a) ≈ updi(a)

bci(m) ≈ bci(H(m))

dlvrj←i(m) ≈ dlvrj←i(H(m)).

(19)

We now give the statement of the main theorem and sketch its proof.596

Theorem 36. Let H = Pfin(M). For all states si, write (si, di) ∼1 Hi ⇐⇒597

[[Hi]] = si = [[di]]. Also write σi ∼2 τi if m ∈ σi ⇐⇒ H(m) ∈ τi. Then the pair598

of relations599

(≈,R1) ⊆ (Est × E)× ((H×M(H))n × (S ×H×M(M))n)

where R1 =
∏

i∈n Ri, and600

Ri = {(si, di, σi), (Hi, τi) | (si, di) ∼1 Hi ∧ σi ∼2 τi}, (20)

is a simulation of (−→, q) and ( 7−→, q′).601

Proof sketch. On related configurations 〈α, (si, di, σi)i∈n〉 and 〈β, (Hi, τi)i∈n〉,602

proceed by case analysis on the transitions 〈α, (si, di, σi)〉 −→ 〈γ, (yi)i∈n〉 and603

find the simulating transition 〈β, (Hi, τi)i∈n〉 7−→ 〈ϕ, (zi)i∈n〉. The cases are:604

1. γ = updj(a), then yj has updated both sj and dj by generating locally and605

applying the message m. This same message m can be generated and applied606

locally from (Hj , τj) and event-transition ϕ = updj(a).607

4 We may essentially think of H(m) as a causal history [42] of m.



2. γ = bcj(m), then each yi 6= yj has input m in their buffer. From the op-608

based rules, we must have α = updj(a) as well and therefore β = updj(a).609

By the previous case, and the semantics of causality, Hj = H(m), so we610

choose ϕ = bcj(Hj).611

3. γ = dlvrj←k(m), then m ∈ σj and was deliverable. Apply the hypothesis612

and do the corresponding ϕ = dlvrj←k(H(m)) event.613

The following corollary coincides with weak simulation, and is ultimately614

what we wanted to show.615

Corollary 37. For every execution 〈>, (s0,∅)i∈n〉 ∗
op〈α, (si, σi)i∈n〉, there is616

a corresponding execution 〈>, (∅,∅)i∈n〉 ∗
st〈β, (Hi, τi)i∈n〉 where ∀i ∈ n. [[Hi]] =617

si. Hence every ( op, qop) behavior yields a ( st, qst) behavior.618

The other weak simulation can be argued more directly. It’s proof is remark-619

ably similar to that of Theorem 31. Define the relation ≈ on events Est × Eop as620

follows:621

(i). updj(a) ≈ bcj(m) for a ∈ A, m ∈ M ,622

(ii). dlvrj←i(H) ≈ dlvrj←i(m) for H ∈ Pfin(M) and m ∈ M ,623

(iii). sendj→i(H) ≈ α, for all α ∈ Eop.624

Theorem 38. Define the relation R2 on global states as625

R2 =
∏

i∈n
{(Hi, τi), (si, di, σi) | (si, di) ∼1 Hi ∧ τi ∼2 σi}

where ∼1 is as in Theorem 36 and626

σi ∼2 τi ⇐⇒ ∀H ∈ τi. ∃{m1, . . . ,mk} ⊆ σi. [[Hi ∪H]] = em1···mk
(si).

Then (≈,R2) is a weak simulation from ( st, qst) to ( op, qop).627

Proof sketch. Follow the proof structure of Theorem 31. The only tricky case is628

when we must deliver a sequence of messages m1 · · ·mk to simulate the delivery629

of a set H ∈ Pfin(M). The key insight is that H itself contains only a subset of630

messages O ⊆ H which produce an observable effect in the computation. That631

is, [[Hi ∪H]] = [[H ∪ O]]. The set O of messages is the set {m1, . . . ,mk} we are632

looking for.633

5 Related Work634

Specification and verification of CRDTs. The primary focus of the most exist-635

ing research on verified CRDTs has been the verification of strong convergence636

and other safety properties for either state-based [45, 12, 31, 44, 33, 22] or op-637

based [15, 30, 25, 24, 32] CRDTs.5 One exception is the work of Burckhardt et638

5 Timany et al. [44] also consider verification of liveness properties, such as eventual
delivery of messages.



al. [9], who give a framework for axiomatic specification and verification of both639

op-based and state-based CRDTs, inspired by previous work on axiomatization640

of weak memory models.641

To our knowledge, our work is the first to take the approach of modeling642

CRDTs with coalgebra in mind. However, the use of (bi)simulation relations643

in CRDT verification is not new. For instance, Burckhardt et al. [9]’s frame-644

work is based on replication-aware simulations, and Nair et al. [31] use a strong645

bisimulation argument to justify the use of simpler, easier-to-implement proof646

rules in an automated verification tool for state-based CRDTs, using the more647

complicated semantics as a reference implementation.648

Nieto et al. [33] observe that whether a CRDT is op-based or state-based is649

in fact an implementation detail that should be hidden from clients, and their650

verification approach centers around this representation independence property.651

They contribute the first mechanically verified representation independence re-652

sult for a specific CRDT, the pn-counter, demonstrating that a particular client653

program cannot distinguish between (handwritten) op-based and state-based654

implementations of this CRDT. Our goal in this work, on the other hand, is to655

make precise the sense in which Shapiro et al. [43]’s general op-to-state-based and656

state-to-op-based emulation algorithms result in the same observable behavior657

for the original and the emulating object. However, we have not yet attempted658

any proof mechanization. More generally, mechanized verification of state-based659

and op-based CRDTs, both interactive [45, 15, 44, 32, 33] and automated [31,660

30, 10, 22], is an active area of research. Our goal in this work is to complement661

these existing verification efforts by making precise the sense in which results for662

op-based CRDTs can be said to transfer to state-based CRDTs and vice versa.663

Coalgebraic reasoning about concurrent and distributed systems. The theory of664

universal coalgebra [20, 37, 36, 16] is a general model for state-based systems,665

and can be seen as a generalization of classical work on process calculi [38, 17,666

28, 29]. The typical notion of equivalence when modeling a system as a process667

calculus or as a coalgebra is that of bisimulation [38, 28, 29], since classical668

definitions of bisimulation on process calculi generalize nicely to coalgebras as669

Hermida-Jacobs bisimulation [20], or Aczel-Mendler bisimulations [2, 37].670

The transition system coalgebras we give here are presented on a mostly se-671

mantic level, i.e., there is no corresponding process calculus. Thus our models672

of CRDTs are closer in spirit to the the classical state-machine models of dis-673

tributed computing theory [23, 41, 4, 26]. Moreover, the concept of simulation674

(as opposed to bisimulation) in coalgebra and classical distributed computing675

theory is not new [19, 4, 1], although, unlike in the present work, classical dis-676

tributed computing theory does not make use of the aforementioned coalgebraic677

notion.678
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