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Abstract. Composite theories are the algebraic equivalent of distribu-
tive laws. In this paper, we delve into the details of this correspondence
and concretely show how to construct a composite theory from a distribu-
tive law and vice versa. Using term rewriting methods, we also describe
when a minimal set of equations axiomatises the composite theory.
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1 Introduction

Monads are categorical structures [4, 20] with many applications in (co)algebraic
approaches to program semantics, notably to model effects such as nondetermin-
ism, probabilities and exceptions [24, 27, 6, 17]. Monads that occur in the speci-
fication of programs and are used in reasoning about programs are often finitary
and Set-based, and hence can be presented as algebraic theories [7, 21, 1].

The algebraic view on monads has been especially useful when studying
monad compositions [8, 14, 25, 26, 36]. Composing monads is a way to combine
multiple computational effects, and is usually done categorically via a distribu-
tive law [5, 22]. However, the required distributive laws do not always exist,
and the use of algebraic theories was instrumental in proving so-called no-go
theorems, which tell us when two finitary monads cannot be composed via a
distributive law [36].

Central to these results is the correspondence between composites of algebraic
theories, and distributive laws between the corresponding monads. Briefly stated,
a composite of two algebraic theories S and T is a theory U that contains all the
function symbols and equations of S and T as well as a set of distribution axioms
that specify how equality of mixed terms can be reduced to equality in S and
T. Composite theories were originally studied by Cheng [8] on the abstract level
of Lawvere theories. Piróg & Staton [26] formulated them in the more concrete
setting of algebraic theories.
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While Piróg & Staton state the correspondence between composite theories
and distributive laws, they do not provide a proof, referring instead to Cheng.
In her thesis, Zwart [35] gives a constructive version of this correspondence for
the category Set, but she does not prove directly that the algebraic theory she
constructs from a distributive law is indeed a composite theory.

Furthermore, the theory Zwart constructs is given via a set Eλ that contains
all possible equations with interaction between the theories S and T. While this
axiomatisation does the job, it is neither elegant nor practical to work with.
Composite theories can often be described in terms of a few simple distribution
axioms. A classic example is the theory of rings, which is a composite of the
theories of monoids and Abelian groups via the two ‘times over plus’ distribution
axioms. A systematic approach to identify such a minimal set of distribution
axioms for a composite theory would be far more practical than the set Eλ.

In this paper, we present a full and self-contained proof of the correspondence
between composite theories U (of T after S) and distributive laws λ : ST → TS,
where S and T are algebraic theories and S, T are their corresponding finitary Set-
monads. Section 4 shows how to get a distributive law from a composite theory,
and Section 5 shows how to construct a composite theory from a distributive
law. The proof of the latter uses term rewriting techniques. In particular, we
introduce functor rewriting systems in order to reason about strings of functors,
and to obtain a separation of U-terms.

In addition, in Section 6 we give criteria that ensure that a certain minimal set
of distribution axioms E′ ⊆ Eλ suffices to axiomatise U. The natural candidate
for E′ consists of equations in which the left-hand side is a term consisting
of exactly one S-operation symbol, which has exactly one T-operation symbol
among its arguments. We prove that if a term rewriting system corresponding to
E′ is terminating, then ES∪ET∪E′ axiomatises U. To illustrate that this criterion
is not trivially satisfied, we give an example in which E′ does not terminate and
indeed does not axiomatise U. Finally, we show that we have termination if the
right-hand sides of the equations in E′ are of a certain form, and apply our
results to establish presentations of some composite monads/theories.

2 Preliminaries

We assume that the reader is familiar with basic notions of category theory
[3, 20, 28]. This section recalls basic definitions and results concerning mon-
ads, algebraic theories, and term rewriting systems, and fixes notation for the
concepts we use in this paper.

2.1 Monads

Definition 1. A monad (M,η, µ) on a category C is a triple consisting of an
endofunctor M : C→ C, and two natural transformations, the unit η : id⇒M
and the multiplication µ : M2 ⇒ M that make (1) and (2) commute. For
convenience, we often refer to a monad (M,η, µ) by its functor part M .
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Example 2. Here are some examples of Set-monads, where we always mean the
finitary versions. For more details on these monads, see e.g. [13, §1.2.1].

– The list and non-empty list monads L and L+, with ηLX(x) = ηL
+

X (x) = [x],
and µL = µL

+ being concatenation.
– The multiset monadM, with ηM(x) = HxI and µM taking the union, adding

multiplicities. Taking multiplicities in Z gives the Abelian group monad A.
– The distribution monad D, with ηD(x) = 1x and a weighted average of µD.
– The reader monad RA(X) = XA, where A is a finite set, with ηR the con-

stant function and µR reading the same element twice.
Definition 3. Given two monads (M,ηM , µM ) and (T, ηT , µT ) on a category C,
a monad morphism from M to T is a natural transformation θ : M ⇒ T that
makes (3) and (4) commute, , where θθ := θT ·Mθ = Tθ · θM (called horizontal
composition). If each component of θ is an isomorphism, we say that the two
monads are isomorphic.

M

id
T

θ

ηM

ηT

(3)
M2 T 2

M T

µM

θθ

µT

θ

(4)

Definition 4. Let (M,η, µ) be a monad on category C. An (Eilenberg-Moore)
M -algebra is a C-morphism α : MX → X for some X ∈ C, denoted (X,α)
for short, such that (5) and (6) commute. An M -algebra homomorphism f :
(X,α) → (Y, β) between two M -algebras is a function f : X → Y such that
(7) commutes. The category of M -algebras and M -algebra homomorphisms is
denoted EM(M) and called the Eilenberg-Moore category of M .

X MX
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ηX

α (5)
M2X MX

MX X
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α
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Definition 5. Let S, T be monads. A distributive law λ : ST ⇒ TS between
monads is a natural transformation satisfying (8)-(11). A weak distributive
law λ : ST ⇒ TS is a natural transformation satisfying (9)-(11).

T

ST TS

ηST TηS

λ

(8)
S

ST TS

SηT ηTS

λ

(9)

SST STS TSS

ST TS

Sλ λS

µST TµS

λ

(10)
STT TST TTS

ST TS

λT Tλ

SµT µTS

λ

(11)
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A distributive law λ : ST → TS induces a monad structure on the functor
TS as follows [5, §1]:(
TS, ηTS :=

(
id ηT ηS

−−−→ TS
)
, µTS :=

(
TSTS

TλS−−−→ TTSS
µTµS

−−−→ TS
))

(12)

The algebras for this composite monad are algebras that are simultaneously
S-algebras and T -algebras. This is visible through the isomorphism EM(TS) ∼=
Alg(λ) [5, §2], where the category Alg(λ) of λ-algebras is defined as follows:

Definition 6. Given monads S, T and distributive law
λ : ST → TS, then the objects of the category Alg(λ)
are triples (X,σ, τ), such that (X,σ) is an S-algebra
and (X, τ) is a T -algebra, and the diagram on the right
commutes. The morphisms of Alg(λ) are C-morphisms
that are both S- and T -algebra homomorphisms.

STX TSX

SX TX

X

λ

Sτ

σ

Tσ

τ

2.2 Algebraic Theories

Definition 7. An algebraic theory is a pair (Σ,E) consisting of an algebraic
signature Σ and set of equations E over Σ defined as follows.

– An algebraic signature Σ is a set of operation symbols. Each op(n) ∈ Σ
has an arity n ∈ N.

– The set T (Σ,X), also denoted Σ∗X, of Σ-terms over a set X is defined
inductively: elements in X are terms, and given terms t1, . . . , tn and op(n) ∈
Σ, then op(t1, . . . , tn) is a term.

– An equation over a signature Σ is a pair (s, t) of Σ-terms.

For the rest of this paper, we fix a set V = {v1, v2, v3, . . .} of variables. The
subset of V appearing in a term t is denoted as var(t). Functions of the form
υ : V → Y are called variable assignments.

Notation 8. In this paper we make heavy use of substitutions. For readability,
we pick from the following notations for substitutions, depending on context.
Given terms t(x1, .., xn) and s1, . . . , sn, and variable assignment h : V → T (Σ,V)
defined as x1 7→ sx1 , . . . , xn 7→ sxn

and identity elsewhere, we denote the term t
where each xi is substituted with si (for i = 1, . . . , n) by either t[h], t[s1, ..., sn], or
t[sx/x] (or even t[sx]) for short, where x ranges over all variables in t. Moreover,
given a family of terms (tx[sx,y/y])x∈X , we will simply write each term tx[sy],
as we can assume that each tx has distinct variables by choosing the (say m)
variables of tx1 to be y1, . . . , ym, the variables of tx2 to start at ym+1, and so on.

Definition 9. The category Alg(Σ,E) consists of (Σ,E)-algebras and homo-
morphisms between them.

– A Σ-algebra is a pair (X, J·K) consisting of a set X and a collection of
interpretations: for each op(n) ∈ Σ, we have JopK : Xn → X. Any function
f : X → Y extends to a unique homomorphism, J·Kf : T (Σ,X) → Y ,
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as given by equations (13) and (14) below. When f = idX , we omit the
subscript.

JxKf := f(x), and (13)
Jop(t1, . . . , tn)Kf := JopK(Jt1Kf , . . . , JtnKf ). (14)

– A (Σ,E)-algebra (X, J·K) is a Σ-algebra whose J·K satisfies all equations in
E, i.e., for each (s, t) ∈ E and all variable assignments υ, JsKυ = JtKυ.

– A (Σ,E)-algebra homomorphism f : (X, J·K) → (X ′, J·K′) is a function
f : X → X ′ such that fJopK = JopK′fn, for all op(n) ∈ Σ.

Given an algebraic theory T = (ΣT, ET) and ΣT-terms s and t, we write
s =T t to denote that the equality s = t is derivable from the axioms ET in
equational logic. The inference rules of equational logic are in [30, §8.1].

Definition 10. There is a free-forgetful adjunction F : Set −→⊥←− Alg(Σ,E) :U .
– The free (Σ,E)-algebra on set X is the (Σ,E)-algebra (T (Σ,X)/=(Σ,E), J·K)

with carrier T (Σ,X) modulo =(Σ,E). The equivalence class of a term t is
denoted t

(Σ,E) or t if the theory is clear from context. The interpretation of
op(n) ∈ ΣT is JopK(t1 , . . . , tn) := op(t1, . . . , tn).

– The free functor F : Set→ Alg(Σ,E) sends X to its free (Σ,E)-algebra,
and any function f : X → Y to Ff : FX → FY defined by Ff(t) := t[f ].

The fact that F is a well-defined functor is well-known and an account of it
is provided in the extended version of the paper [30]. Composing the adjoint
functors gives a monad (T := UF, η, µ), called the free algebra monad [20,
VI.1]. The unit is η : x 7→ x and the multiplication is µ : t[ti/vi] 7→ t[ti/vi].

Definition 11 ([29, Def. 5, Lem. 8]). An algebraic theory (Σ,E) is an alge-
braic presentation of a Set-monad (M,ηM , µM ) if we have an isomorphism
of monads (T, ηT , µT ) ∼= (M,ηM , µM ), where T is the free algebra monad of
(Σ,E). An equivalent formulation is that both categories of algebras are con-
cretely isomorphic4: EM(M) ∼=conc Alg(Σ,E). The former isomorphism relates
the monads on a syntactic level, whereas the latter relates them semantically.

Note that a monad can have multiple presentations.

Example 12. Here are algebraic presentations of the monads from Example 2.

– The list monad L is presented by the theory of monoids.
– The non-empty list monad L+ is presented by the theory of semigroups.
– The multiset monadM is presented by the theory of commutative monoids.
– The Abelian group monad A is presented by the theory of Abelian groups.
– The distribution monad D is presented by the theory of convex algebras [15].
– The reader monad RA is presented by the theory of local states [27] consisting

of a single |A|-ary operation symbol, satisfying idempotence and diagonal
equations (e.g. in the case |A| = 2: a ∗ a = a and (a ∗ b) ∗ (c ∗ d) = (a ∗ d)).

4 “concrete” means that both functors of this isomorphism commute with the forgetful
functors EM(M)→ Set and Alg(Σ, E)→ Set. In other words it sends an M -algebra
(X, x : MX → X) to a (Σ, E)-algebra with same carrier (X, J·K) and vice-versa.
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2.3 Term Rewriting Systems

We only briefly explain the basic concepts and results of term rewriting systems
(TRS) that we need in our proofs. For more background, we recommend the
book “Term Rewriting Systems” by Terese [32].

Definition 13. Given a signature Σ, a rewrite rule (l → r) is a pair of Σ-
terms (l, r) such that l is not a variable, and all variables in the right occur also
in the left: var(l) ⊇ var(r). A term rewriting system R = (Σ,R) consists of a
signature Σ and a set of rewrite rules R. The rewrite relation→R is the smallest
relation on T (Σ,X) that contains R and is closed under substitution and under
context.5 We simply write → when R is clear from the context. The transitive
and reflexive closure of → is written as →→. When all operation symbols in Σ
have arity 1, then R = (Σ,R) is called a string rewriting system.

Example 14. Let Σ := {0(0), s(1),+(2)} and R = {x + 0 → x, x + s(y) →
s(x+ y)}. A rewrite sequence is for instance

s(s(0)) + s(0) → s(s(s(0)) + 0) → s(s(s(0))).

Definition 15. Let R := (Σ,R) be a TRS.

– R is terminating or strongly normalising (SN) if every
rewriting sequence is finite t0 → t1 → . . .→ tn ̸→.

– R is locally confluent or weak Church-Rosser (WCR)
if for all terms t1, t2, t3 with t2 ← t1 → t3, there exists a
term t4 with t2 →→ t4 ←← t3.

– R is confluent or Church-Rosser (CR) if for all terms
t1, t2, t3 with t2 ←← t1 →→ t3, there exists a term t4 with t2 →→
t4 ←← t3.

t1

t2 t3

t4

(WCR)

t1

t2 t3

t4

(CR)

A term is called a normal form, if it cannot be rewritten any further. If a
TRS is terminating (SN) and confluent (CR), then each term can be rewritten
to a unique normal form.

A well-known result says that in the presence of termination, local confluence
is enough to entail confluence.

Lemma 16 (Newman’s Lemma). If a TRS is terminating (SN) and locally
confluent (WCR), then it is also confluent (CR).

Two common techniques to prove termination are the polynomial interpreta-
tion over N [32, §6.2.2] and the multiset path order [31]. The idea of polynomial
interpretation over N is to choose a Σ-algebra (N, J·K) where every interpretation
JopK is a monotone polynomial on N. If each rule (l, r) of a system is strictly
decreasing, JlK > JrK, then termination follows by well-foundedness of N.

5 For the definition of context, see [32, §2.1.1]
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Example 17. The TRS in Example 14 is terminating. To see this, take as polyno-
mial interpretation for example J0K = 1, Js(x)K = x+1, and Jx+yK = x+2y+1.
These polynomials are monotone and every rule is strictly decreasing:

Jx+ 0K = x+ 2 · 1 + 1 = x+ 3 > x = JxK,
Jx+ s(y)K = x+ 2y + 3 > x+ 2y + 2 = Js(x+ y)K.

The multiset path order method uses a decreasing sequence of multisets to
show termination. We explain this briefly in the arXiv version of the paper [30].

A common technique for proving local confluence is to prove convergence of
critical pairs [32, §2.7]. Informally, a critical pair is formed when two rewrite
rules can be applied to the same term while overlapping on one or more func-
tion symbols, creating two different terms. A critical pair converges if the two
mentioned terms can be rewritten to the same term.

Lemma 18 (Critical pair lemma). A TRS is locally confluent (WCR) if
and only if all its critical pairs converge.

3 Composite Theories

We introduce the concept of composite theories. Our definition is slightly different
from, but equivalent to, the original definition by Piróg & Staton [26, Def. 3]
and equivalent formulations in Zwart’s thesis [35, Def. 3.2, Prop. 3.4].

Definition 19. Let U,S,T be algebraic theories. Suppose U contains S and T,
meaning ΣS, ΣT ⊆ ΣU and ES, ET ⊆ EU.

– A U-term is separated if it is of the form t[sx/x], where t is a T-term and
{sx | x ∈ var(t)} is a family of S-terms.

– Two separated terms t[sx] and t′[s′
y] are equal modulo (S,T) if their TS-

equivalence classes are equal in TSV: t[sx
S]

T
= t′[s′

y

S]
T
.

– U is a composite theory of T after S if every U-term u is equal to a
separated term u =U t[sx/x], that we call a separation of u, and for any two
separated terms v, v′, if v =U v

′ then v and v′ must be equal modulo (S,T).

Lemma 20. For any two separated terms t[sx/x] and t′[sy/y] in a composite
theory, the following are equivalent:
1. t[sx/x] and t′[s′

y/y] are equal modulo (S,T) in the sense of Definition 19.
2. t[sx/x] and t′[s′

y/y] are equal modulo (S,T) in the sense of [35, Def. 3.2]. ■6

Example 21. Two S-terms s and s′ are equal modulo (S,T) if and only if s =S s
′,

and similarly for T-terms.
6 The symbol ■ denotes that the proof is in the extended version on arXiv [30].
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Example 22. The prime example of a composite theory is the theory of rings
U := Ring. It contains the theories S := Mon of monoids and T := AbGrp of
Abelian groups. We recall their signatures to fix notation: ΣMon := {·(2), 1(0)}
and ΣAbGrp := {0(0),+(2),−(1)}. We sometimes omit the “multiplication” symbol
· for simplicity. The signature of rings is given by ΣRing := ΣMon ⊎ ΣAbGrp. The
equations of rings are given by the equations of monoids, Abelian groups, and
two distributivity axioms:

ERing := EMon ∪ EAbGrp ∪

{
x(y + z) = (xy) + (xz),
(y + z)x = (yx) + (zx)

}
.

A separated term t[sx/x] in Ring is an Abelian group term t, with monoid
terms {sx} substituted for its variables. We give some examples of non-separated
terms, of possible separations for them, and of equality modulo (Mon,AbGrp)
between the separations.

The term x(y+z) is non-separated. Possible separations are e.g. xy+xz and
(xy + xz) + 0. Both are equal modulo (Mon,AbGrp), as their monoid parts are
identical and their Abelian group parts t = (x1 + x2) + 0 and t′ = x1 + x2 are
equal in the theory of Abelian groups.

The term x · 0 is also non-separated. It is equal in Ring to the separated
terms 0 and (1 · x) + (−(x · 1)). To see that these separations are equal modulo
(Mon,AbGrp), notice that 1·x =Mon x·1, and that the terms 0 and x1 +(−x2) are
equal in Abelian groups when x1 = x2. Thus: 0AbGrp = (1 · xMon) + (−(x · 1Mon)).

AbGrp

We now show that distributive laws between monads correspond one-to-one
to composite theories.

4 From Composite Theory to Distributive Law

We first show how to construct a distributive law from a given composite theory.

Theorem 23 ([35, Theorem 3.8]). Let S,T be algebraic theories with free
algebra monads S, T respectively. Let U be a composite theory of T after S, with
free algebra monad U . Then the following defines a distributive law λ : ST ⇒ TS
such that U is an algebraic presentation of the resulting monad TS, where t′[s′

x]
is a separation of s[tx]:

λV : STV → TSV : s[tx
T
/x]

S
7→ t′[s′

x

S
/x]

T

Proof. Instead of directly checking the axioms for a distributive law, we prove
an equivalent characterisation given by Beck [5, p.122]. That is, we claim that
there exist a natural transformation µTS : TSTS ⇒ TS such that:
(i) (TS, ηTS := ηT ηS , µTS) is a monad.
(ii) The natural transformations ηTS and TηS are monad morphisms.
(iii) The middle unitary law holds: µTS · TηSηTS = idTS.
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It follows then that the monad (TS, ηT ηS , µTS) does indeed come from a
distributive law, which is given by: λ = µTS · ηTSTηS . A simple but tedious
calculation shows that indeed λ(s[tx

T
/x]

S
) = t′[s′

x

S
/x]

T
. The details of this cal-

culation are in the extended version [30].
To define µTS , we use the fact that the functors U and TS are isomorphic.

Indeed, since U is a composite theory, every U-term u has a separation u =U
t[sx/x]. Hence ϕ : U ⇒ TS and ψ : TS ⇒ U given below are inverse natural
transformations. Using ϕ, ψ, and the multiplication µU , we can then define µTS .

ϕ(u) := t[sx
S
/x]

T
(15)

ψ(t[sx
S
/x]

T
) := t[sx/x]

U
(16)

µTS :=
(
TSTS

ψψ−−→ UU
µU

−−→ U
ϕ−→ TS

)
. (17)

Notice that ϕ is well-defined, as the choice of the separation t[sx/x] does not mat-
ter by equality modulo (S,T). To see that ψ is also well-defined, take t[sx

S
/x]

T
=

t′[s′
x

S
/x]

T
. The T- and S-proofs of that equality are also U-proofs by definition

of U, implying that t[sx
U
/x]

U
= t′[s′

x

U
/x]

U
and hence that t[sx/x]

U
= t′[s′

x/x]
U

by
applying µU on both sides. The proofs of (i)-(iii) are in [30].

5 From Distributive Law to Composite Theory

We now show how to construct a composite theory from a given distributive law.

Theorem 24. Let S, T be two monads algebraically presented by two algebraic
theories S and T, respectively. Let λ : ST ⇒ TS be a distributive law. We define
a set Eλ of equations and a theory Uλ as follows [35, Definition 3.8].

Eλ :=
{(
s[tx/x], t[sy/y]

)
| λV

(
s[tx

T
/x]

S)
= t[sy

S
/y]

T)}
.

ΣUλ := ΣS ⊎ΣT,

EUλ := ES ∪ ET ∪ Eλ.

Then, Uλ is a composite theory of T after S.

To prove Theorem 24, we observe that every Uλ-term u can be assigned
a regular set type(u) in {S, T}∗V, expressing how u nests S and T operation
symbols. We give an example below in Example 27. We obtain a TS-separated
term by first mapping u to the equivalence class u in type(u), now viewed as
a set. We then apply λ, µS and µT to u until we reach an equivalence class
t[sx

S]
T
∈ TSV, where we use the axiom of choice to choose a representative t[sx].

The axioms of the three natural transformations ensure that t[sx
S]

T
does not

depend on the order in which they were applied.
The termination of the procedure of applying λ, µS and µT and the unique-

ness of t[sx
S]

T
are intuitively clear, yet showing it formally is not trivial. In the

following definitions we formalise the separation procedure that we described
here. We then give a proof of termination using rewriting techniques. We denote
string concatenation with “::”.
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Definition 25. We define a function type : Σ∗
UλV → {S, T}∗V recursively:

– For v ∈ V, then type(v) := V.
– For s[u1, . . . , un], where s ∈ T (ΣS,V), and u1, . . . , un ∈ Σ∗

UλV do not have
an S-symbol as root, let w be longest word in the set {type(u1), . . . , type(un)},
then type(s[u1, . . . , un]) := S :: w.

– The t[u1, . . . , un] case, where u1, . . . , un do not start with a T-symbol, is dual.

Informally, type(u) is the shortest string wV such that u belongs to an equiv-
alence class in the set wV. We will formally define this equivalence class in
Definition 26 below. Furthermore, it can be seen that type(u) does not contain
successive occurrences of S, similarly for T .

Definition 26. For u ∈ Σ∗
UλV and w ∈ {S, T}∗ such that type(u) is a substring7

of wV, we recursively define uw ∈ wV:

– For v ∈ V, vε := v, vS::w′ := vw
′ S
, and vT ::w′ := vw

′ T
.

– For s[u1, . . . , un] where s ∈ Σ∗
SV, and u1, . . . , un ∈ Σ∗

UλV that are either
variables or have root symbols in ΣT,

s[u1, . . . , un]
S::w′

:= s[u1
w′
, . . . , un

w′ ]
S
.

– The t[u1, . . . , un] case, where u1, . . . , un do not start with a T-symbol, is dual.

If type(u) is not a substring of wV, then uw is undefined.

Example 27. Take the operations f (2), f ′(1) ∈ ΣS, and
g(1) ∈ ΣT. For u := f(f(x, g(x)), g(f ′(f(x, x)))), we have

type(u) = STSV.

uSTS = f(f(xST
, g(xS)

T
), g(f ′(f(x, x))

S
)
T

)
S

.

f

f

x g

x

g

f ′

f

x x

Before we formalise the remainder of the separation procedure, we interpret
functors and natural transformations as a term rewriting system.

Definition 28. Let Σ := {Fi | i ∈ I} be a finite set of (names of) functors, and
R := {αj : wj → w′

j | wj , w′
j ∈ Σ∗, j ∈ J} be a finite set of (names of) natural

transformations. We call (Σ,R) a functor rewriting system (FRS).

The name “functor rewriting system” is motivated by seeing each natural
transformation (α : w → w′) ∈ R as a rewrite rule on strings of functors in
Σ∗. For all functor strings w0, w1 ∈ Σ∗, the natural transformation w0αw1 :
w0ww1 → w0w

′w1 (sometimes called a whiskering) is seen as a rewrite step,
with w0 as left-context and w1 as right-context. Note that the only valid rewrite
steps are those resulting from natural transformations in R. If the functors in
Σ satisfy (semantic) identities like FG = H that are not represented by some
α ∈ R, then we do not allow rewrite steps that use this identity.
7 We say that w is a substring of w′ if w can be obtained by deleting zero or more

letters from w′.
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Remark 29. Kozen [19] introduced rewrite categories for applying rewriting con-
cepts to categorical reasoning, including reasoning about monad compositions. A
functor rewrite system (Σ,R) is the rewrite category (Σ∗,R). For Set-monads
(S, µS , ηT ) and (T, µT , ηT ) and distributive law λ : ST → TS, the FRS Rsep

defined (below) in Definition 33 is the rewrite category ({S, T}∗, {µS , µT , λ})
viewed as a subcategory of the 2-category presented by (O,F ,R, E) where O =
{Set}, F = {S, T}, R = {µS , µT , λ} and E consists of the equation (2) for µS
and µT , and the distributive law axioms (10) and (11) involving λ and µS , µT .
See also Section 7.1 for further discussion.

The functors and natural transformations in an FRS carry categorical struc-
ture in the form of commuting diagrams, allowing a variation of (local) confluence
[19, §3.1].

Definition 30. A functor rewriting system is (read ⟲ as “commuting”)
– WCR⟲ if for all w0

α←− w β−→ w1 there exists T0
γ−→→ w′ δ←−← T1 s.t. γα = δβ.

– CR⟲ if for all w0
α←−← w

β−→→ w1 there exists w0
γ−→→ w′ δ←−← w1 s.t. γα = δβ.

There are equivalents to Newman’s Lemma (Lemma 16) and the Critical Pair
Lemma (Lemma 18). The proofs are in the extended version [30].

Lemma 31 (FRS Newman’s lemma). If a functor rewriting system is ter-
minating (SN) and locally confluent-commuting (WCR⟲), then it is confluent-
commuting (CR⟲). ■

Lemma 32 (FRS critical pair lemma). A functor rewriting system is locally
confluent-commuting (WCR⟲) if and only if all critical pairs converge with a
commuting diagram. ■

We use the following FRS for our separation procedure.

Definition 33. We define a functor rewriting system Rsep = (Σ,R), where
Σ := {S, T} and R := {λ : ST → TS, µS : SS → S, µT : TT → T}.

Lemma 34. Rsep is terminating (SN) and confluent-commuting (CR⟲). Hence
each functor string has a unique normal form in Rsep.

Proof. We show termination (SN) of Rsep using polynomial interpretation over
N. Let JSK(x) := 2x + 1 and JT K(x) := x + 1, which are indeed monotone in x.
The three rewrite rules are strictly decreasing with respect to that order:

JST K(x) = 2x+ 3 > 2x+ 2 = JTSK(x),
JSSK(x) = 4x+ 3 > 2x+ 1 = JSK(x),
JTT K(x) = x+ 2 > x+ 1 = JT K(x).

We now prove that Rsep is CR⟲. Since we have termination (SN) it suffices to
prove WCR⟲ by Lemma 31. To invoke Lemma 32, we check that all critical pairs
converge. Because we consider the objects purely syntactically as strings/words,
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we can enumerate all possible overlaps of left-hand sides of rules, giving rise to
exactly 4 critical pairs, that indeed all converge:

SST

STS ST

TSS

TS

Sλ µST

λ

λS

TµS

(λ axiom)
(10)

STT

ST TST

TTS

TS

SµT

λ

λT

Tλ

µTS

(λ axiom)
(11)

SSS

SS SS

S

SµS µSS

µSµS

(S axiom)
(2)

TTT

TT TT

T

TµT µTT

µTµT

(T axiom)
(2)

We now have the required tools to formalise the separation procedure and
show that every term in Uλ can be separated. The first step is to define a function
sep that maps a Uλ-term u to a separated term sep(u).

Definition 35. For u ∈ Σ∗
Uλ , we define sep(u) as follows. Let w ∈ {S, T}∗

be such that type(u) = wV. Let α : w →→ w′ be a Rsep-rewrite sequence to the
unique normal form w′ of w in Rsep. By the axiom of choice, there is a choice
function ρw′V that selects a term representative ρw′V(c) for each equivalence class
c ∈ w′V. We define sep(u) := ρw′V(αV(uw)).

Remark 36. In general, we need the Axiom of Choice to obtain sep. However, if
the theory S and T can be oriented8 to give terminating and confluent TRSs,
then we can make ρ select the unique normal form making sep constructive.

Lemma 37. For all u ∈ Σ∗
Uλ , sep(u) is a well-defined, separated Uλ-term and

u =Uλ sep(u).

Proof. To see that sep(u) is well defined, note that if α and β are rewrite se-
quences w →→ w′ from w = type(u) to its normal form w′, then by CR⟲, we have
α = β.

To see that sep(u) is separated, note that the normal form w′ is equal to TS,
T or S, since any other string will contain a reducible expression (redex). Hence
αV(uw) ∈ TSV, TV or SV, so any representative selected by ρw′V is separated.

To see that u =Uλ sep(u), recall that α : w →→ w′ is composed of λ, µS and
µT , possibly applied within a context. By substitution and congruence rules, it
suffices to prove that for all terms u, u′ (of compatible type), if u′TS = λ(uST )
then u =Uλ u′, and similarly for µS and µT . That is, representatives of the input
are Uλ-equal to representatives of the output. For λ, this holds by definition of
Eλ. For µS , if u ∈ s[sx

S]
S

then u =Uλ s[sx], and if u′ ∈ s[sx]
S

then u′ =Uλ s[sx].
Hence by transitivity, u =Uλ u′. Similarly for µT .

Lemma 38. For all S-terms s, sep(s) =S s, for all T-terms t, sep(t) =T t, and
for any separated term t[sx/x], sep(t[sx/x]) is equal to t[sx/x] modulo (S,T).
8 By orientation, we mean turning an equation l = r into a rewrite rule, either from

left to right l→ r or right to left l← r.
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Proof. For an S-term s, we have type(s) = SV and sS = s
S. By definition

sep(s) = ρSV(sS) is a representative of sS, hence sep(s) =S s. The arguments
for T-terms and for separated terms t[sx/x] are similar.

We now apply Lemma 37 to show that any two separated terms that are
equal in Uλ, are equal modulo (S,T).

Lemma 39. Any two separated terms equal in Uλ are equal modulo (S,T).

Proof. Suppose two separated terms t0[sx/x] and t′0[s′
y/y] are equal in Uλ. Let T

be a Uλ-derivation tree of this equality t0[sx/x] =Uλ t′0[sy/y] in equational logic.
By an induction on the structure of T, we prove that for each equation u = u′

in T, sep(u) and sep(u′) are equal modulo (S,T). By Lemma 38 and transitiviy
of equality modulo (S,T), we then conclude that t0[sx/x] and t′0[s′

y/y] are equal
modulo (S,T).

The base cases are the Axiom and Reflexivity rules. The induction steps are
the Symmetry, Transitivity, Congruence, and Substitution rules. We show only
the cases of Congruence and Substitution here, as these are the only interesting
cases. The full proof is in the extended version [30].

– Congruence: Given op(n) ∈ ΣUλ , consider u1 = u′
1 . . . un = u′

n

op(u1, . . . , un) = op(u′
1, . . . , u

′
n)

Let ti[si] := sep(ui) and t′i[s′
i] := sep(u′

i) for i = 1, . . . , n. The IH is that
ti[si

S]
T

= t′i[s′
i

S]
T

. We consider the cases in which op is a T-symbol or an
S-symbol separately.

• Suppose op ∈ ΣT. Here is a sketch of the reasoning:

sep(op(u1, . . . , un))
T S

= µTSV

(
op

(
t1[s1

S]
T
, . . . , tn[sn

S]
T)T)

= µTSV

(
op

(
t′1[s′

1
S]

T

, . . . , t′n[s′
n

S]
T)T)

by IH

= sep(op(u′
1, . . . , u

′
n))

T S

.

The first and third equalities are intuitively clear. The details can be
found in the extended version [30].

• Suppose op ∈ ΣS. Here is a sketch of the reasoning:

sep(op(u1, . . . , un))
T S

= TµSV · λV

(
op

(
t1[s1

S]
T
, . . . , tn[sn

S]
T)S)

= TµSV · λV

(
op

(
t′1[s′

1
S]

T

, . . . , t′n[s′
n

S]
T)S)

by IH

= sep(op(u′
1, . . . , u

′
n))

T S

.

The first and third equalities are intuitively clear. The details can be
found in the extended version [30].



14 A. Rosset, M. Zwart, H.H. Hansen, J. Endrullis

– Substitution: Given a substitution f , consider u = u′

u[f ] = u′[f ] .

Let t[sx] := sep(u) and t′[s′
x] := sep(u′). The IH is that t[sx

S]
T

= t′[s′
x

S]
T
. We

start by separating all terms in the image of f . This gives another substitu-
tion g := sep · f . We denote ty[sz] := g(y) for all y ∈ var(u1) ∪ var(u2). Here
is a sketch of the reasoning:

sep(u[f ])
T S

= µTS
(
t[sx[ty[sz]]]

T ST S)
= µTS

(
t′[s′

x[ty[sz]]]
T ST S)

by IH
= sep(u′[f ])

T S

.

The first and third equalities are intuitively clear. The details can be found
in the extended version [30].

The proof of Theorem 24 now follows from Lemmas 37 and 39.
The next theorem was given in Zwart’s thesis [35, Theorem 3.9] but not pub-

lished elsewhere. We have updated the reasoning and obtained a much shorter
proof using the shortcut EM(TS) ∼=conc Alg(λ).

Theorem 40. Let S and T be the free algebra monads of algebraic theories S and
T. If there is a distributive law λ : ST ⇒ TS, then the monad (TS, ηT ηS , µTµS ·
TλS) is presented algebraically by Uλ. ■

6 Axiomatisations of Composite Theories

In Theorem 24, we showed how to obtain an algebraic presentation Uλ of the
composite monad arising from a distributive law λ : ST → TS. However, the
set of equations Eλ accounting for the interactions between S- and T-terms
is maximal in the sense that it contains all possible equations that consist of
representatives of some pair (u, λ(u)) in the graph of λ. In practice, we would
like to have a minimal description of Eλ, such as the one for Ring in Example 22,
which only adds two distribution axioms to the theories of monoids and Abelian
groups.

In this section, we identify criteria on the shape of axioms that allow us to
prove that certain minimal subsets of Eλ suffice to generate the whole of Eλ.
We apply term rewriting methods for proving the necessary claims.

The shape of axioms will be described in terms of layers.

Definition 41. Let S and T be two algebraic theories. Given a term s[tx/x] ∈
Σ∗

SΣ
∗
TV, its ST -layers are described by the pair (m,n) of natural numbers where

m := depth(s) and n := max{depth(tx) | x ∈ var(s)}, where depth denotes the
maximal number of nested (possibly nullary) operation symbols. This corresponds
to the inductively defined notion of depth of term trees where constants have depth
1, and variables depth 0. TS-layers are defined similarly for terms in Σ∗

TΣ
∗
SV.

Example 42. We illustrate ST -layers in Ring (where S = Mon,T = AbGrp).
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ST -Layers (0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 0)

Examples x 0 1 x · 0 x+ 0 x · 1
y x+ y x · y (x+ y) · (y + z) (x+ y) + z x · (y · z)

For the remainder of this section, we assume that S, T, λ, ES, ET, Eλ, and
Uλ are as in Theorem 24.

Lemma 43. For all E′ ⊆ Eλ such that for each f (n) ∈ S, g(m) ∈ T and
each i ∈ {1, . . . , n}, E′ contains one equation of the form l = r, where l =
f(x1, . . . , xi−1, g(y⃗), xi+1, . . . , xn) and r ∈ λV(lT

S
), if the TRS (ΣUλ = ΣS ⊎

ΣT, E
′) is terminating, then ES ∪ ET ∪ E′ generates the same congruence on

Uλ-terms as ES ∪ ET ∪ Eλ. ■

Proof. Let us show why (ΣUλ = ΣS ⊎ΣT, E
′) is a TRS. First, no left-hand side

is a variable by definition of E′. Second, A := var(s[tx]) ⊇ var(t[sy]) holds for
all (s[tx], t[sy]) ∈ E′. This is the case since λA : STA → TSA : s[tx

T]
S
7→ t[sy

S]
T

forces the equivalence class of t[sy] to be in TSA and therefore to only use the
variables in A.

Now let us argue why the congruence relation is left unchanged. Take an
equation (u, u′) ∈ Eλ ∪ ES ∪ ET . The goal is to obtain this equation using only
ES ∪ ET ∪ E′.

– First, using only equations in E′, the Uλ-terms u and u′ can be separated.
Indeed, we assume that the TRS (ΣUλ , E′) is terminating, thus both u and
u′ can be rewritten to normal forms. The equations E′ are exhaustive in the
following sense: every term containing a ΣT-symbol below an ΣS-symbol is
reducible (not in normal form). Thus the normal forms of u and u′ must be
in Σ∗

TΣ
∗
SV, i.e., separated. Let us denote them t[sx/x] and t′[s′

y/y].
– Since Uλ is a composite theory (proven in Theorem 24), and the separated

normal forms t[sx/x] and t′[s′
y/y] are Uλ-equal, they must also be equal

modulo (S,T). By equality modulo (S,T), we have a proof of t[sx/x] =
t′[s′

y/y] using only equations from ES and ET (explicitly so when using the
equivalent formulation (4) of equality modulo (S,T) in [35, Prop. 3.4]).

In order to obtain an E′ for Lemma 43, one can take equations of the form
l = sep(l), but Lemma 43 also applies to other choices of r. As mentioned in
Remark 36, if the theories S and T can be oriented to obtain a confluent and
terminating TRS, then sep(l) can be chosen to be a normal form. For example,
in [26], the theory of left-zero monoids and the theory with a unary idempo-
tent operation were both oriented, allowing for a practical presentation of the
composite theory that the authors called CUT.

Example 44. Let us retrieve the axiomatisation of Ring as given in Example 22,
but starting from its corresponding distributive law λ : LA → AL [5, §4]. The set
E will only contain equations whose left-hand side is among (x+y)z, x(y+z), 0 ·
x, x · 0, (−x)y, and x(−y). For each of those, there are infinitely many choices
for the right-hand side. For instance (x·0, 0), (x·0, 0+0), etc. Thankfully, there is
an easy choice for the right-hand side r, because the theory Mon can be oriented,
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(xy)z → x(yz), 1 · x→ x, and x · 1→ x, as can the theory AbGrp without the
commutativity axiom. Not taking the commutativity axiom into account simply
means that we have to choose one equation between ((x + y)z, xz + yz) and
((x+ y)z, yz + xz). We end up with 6 equations:

(x+ y)z = xz + yz, x · 0 = 0, (−x)y = −(xy),
z(x+ y) = zx+ zy, 0 · x = 0, x(−y) = −(xy).

Reducing from 6 to only the 2 equations of left and right distributivity can be
done using automated tools. In our case, we used Prover9 [23] and obtained the
result instantaneously [30, §8.7].

Note that if E′ ⊆ Eλ is not terminating, then the conclusion is not guaranteed
to hold. The example below exhibits a situation where the set E′ of equations
as defined in Lemma 43 is not enough to generate all of the Eλ equations.

Example 45. We show that the subset of equations of Eλ where all left-hand
sides have layers (1, 1) is not always sufficient (together with ES and ET) to
generate all Eλ equations obtained from a distributive law λ. This example is
an extension of the well-known non-terminating TRS ab→ bbaa [32, Ex.2.3.9].

Consider the theories S and T, with signatures ΣS := {a(1)} and ΣT :=
{b(1)}, and equations ES := {aaa = aa} and ET := {bbb = bb}. We use some
string rewriting notations, such as aax or a2x as shorthand for a(a(x)), etc.
The set of equivalence classes of S is SV = {a2x

S
, ax

S
, x

S | x ∈ V}. Similarly,
TV = {b2x

T
, bx

T
, x

T | x ∈ V}. We define a mapping

λ : STV → TSV
anbmx

TS
7→ b2a2x

ST

, for n,m ∈ {1, 2}
anx

TS
7→ anx

ST
, for n ∈ {1, 2}

bnx
TS
7→ bnx

ST
, for n ∈ {1, 2}

x
TS
7→ x

ST

We show that λ is a distributive law:

– Unit law (8): λV(SηTV (anxS)) = λV(anxTS
) = anx

ST = ηTSV(anxS).
– Unit law (9): λV(ηSTV(bnxT)) = λV(bnxTS

) = bnx
ST = TηSV(bnxT).

– Multiplication law (10): We only show the case for n,m, k ⩾ 1. Other cases
can be easily verified in a similar manner.

anambkx
TSS

∈ SST anb2a2x
ST

S

∈ STS b2a2a2x
SS

T

∈ TSS

an+mbkx
TS

∈ ST b2a2x
ST

= b2a4x
ST

∈ TS

Sλ λS

µST TµS

λ

– Multiplication law (11): Analogous to the previous point.
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From Theorem 24, defining the set Eλ of distributivity equations as below en-
sures that ES ∪ ET ∪ Eλ is an axiomatization of the composite theory Uλ.

Eλ = {anbmx = b2a2x | m,n ⩾ 1, x ∈ V}∪
{anx = anx, bnx = bnx | n ∈ {0, 1, 2}, x ∈ V}

The subset of equations of Eλ that have left-hand side with ST -layers (1, 1)
is E′ = {ab = b2a2}. However, we claim that ES ∪ ET ∪ E′ cannot derive all
equations in Eλ. Indeed, we observe that the distributivity equation aab =Eλ

bbaa cannot be derived. Trying to do so leaves us stuck in a loop: (we underline
the part where an equation is applied)

aab =E′ abbaa =E′ bbaabaa =E′ bbabbaaaa =ES bbabbaa

=E′ bbbbaabaa =ET bbaabaa =E′ . . . (loop)

It is not hard to see that there are no other ways of proving aab = bbaa in
ES ∪ ET ∪ E′. Hence ES ∪ ET ∪ E′ does not generate the same congruence as
ES ∪ ET ∪ Eλ. In line with Lemma 43, the above indeed also shows that E′,
when viewed as a TRS, is not terminating. Note that Lemma 43 only says
that termination is a sufficient condition for a (1,1)-axiomatisation. It does not
exclude that in some composite theories, the set of equations ES∪ET∪E′ might
axiomatise Uλ even in presence of non-termination.

The next lemma identifies a class of equations where termination of the TRS
(ΣU = ΣS ⊎ΣT, E

′) is guaranteed. These are equations in which the right-hand
sides have layers (n, 1), which is inspired from similar results for string rewriting
obtained by Zantema & Geser [34].

Lemma 46. Let S and T be two algebraic theories. Let R be a set rules of the
form s[tx/x] → t[sy/y]. Let Z = {tx | tx is a variable}, i.e., all z ∈ Z occur
directly below an S-operation in s[tx/x]. If each s[tx/x] has ST -layers (1, 1),
each t[sy/y] has TS-layers (n, 1) for some n not fixed, and each sy is linear9 in
Z, then R is terminating. ■

Example 47. We give some axiomatisations of composite theories resulting from
distributive laws in the literature:

1. Let R(X) = XA be the reader monad, with A = {a1, . . . , an}. There is a
distributive law of the finite distribution monad D over R, λ : DR → RD,
that sends p1h1 + . . .+ pnhn to (a 7→ p1h1(a) + . . .+ pnhn(a)) [13, Example
1.34]. Recall that R is presented algebraically by a single operation f (n)

with two equations Example 12, and D is presented by convex algebras.
The distribution axioms as described in Lemma 43 are in our case, for each
p ∈ [0, 1]

f(x1, . . . , xn)⊕p y = f(x1 ⊕p y, . . . , xn ⊕p y).
x⊕p f(y1, . . . , yn) = f(x⊕p y1, . . . , x⊕p yn).

9 Linear in a TRS sense, i.e. variables appearing at most once.
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We see that the right-hand sides of these equations have layers (1, 1) and
both equations satisfy the linearity requirement of Lemma 46, thus ensur-
ing termination. Hence by Theorem 24 and Lemma 43, the above equations
together with the equations for f and for convex algebras present the com-
posite monad on RD induced by λ. Furthermore, we notice that each of
the above equations can be derived from the other one using the axioms of
convex algebras. Therefore, we only need to include one of them for each p.

2. There is a distributive law of multisets over distributions λ : MD → DM
called the parallel multinomial law in [16], see also [9, 11] and [13, Ex. 1.37].
It sends e.g. Hpx1 + (1 − p)x2, yI to pHx1, yI + (1 − p)Hx2, yI, which can be
expressed in the syntax of convex algebras and commutative monoids as

(x1 ⊕p x2) · y = (x1 · y)⊕p (x2 · y).

By Theorem 24, Lemma 43 and Lemma 46 these equations (one for each
p ∈ [0, 1]), together with the axioms of convex algebras and commutative
monoids, present the composite monad on DM induced by λ.

3. There is a distributive law λ : L+L+ → L+L+ for the non-empty list monad
over itself [22]. It sends a list of lists to the singleton list containing the list of
all heads: [[a, b], [c], [d, e, f ]] 7→ [[a, c, d]]. We get the following distributivity
axioms for the composite theory:

a ∗ (b ⋆ c) = a ∗ b
(a ⋆ b) ∗ c = a ∗ c.

Again, the equations satisfy the conditions for Lemma 46, and our results
imply that the above equations together with the semigroup axioms for ∗
and ⋆ present the composite monad on L+L+ induced by λ.

7 Conclusion

In this paper, we proved the correspondence between composite theories of T
after S and distributive laws λ : ST → TS. Furthermore, we gave sufficient
criteria for when a minimal set E′ ⊆ Eλ of distribution equations, along with
ES and ET, axiomatises the composite theory.

The set E′ itself is unlikely to turn many heads, as distributive laws are often
informally described in the literature in terms of such simple distribution axioms.
The surprise, however, comes from the fact that E′ is not always enough (see
Example 45). This is a possible pitfall similar to the ‘simplicity’ of the various
false distributive laws of the powerset monad over itself [18].

7.1 Related work

In Kozen’s work on rewrite categories, he proves that distributive laws yield com-
posite monads in [19, Section 4.2], by showing that crucial properties correspond
to TS being a terminal object in the rewrite category with µS , µT , ηS , ηT , λ.
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However, we cannot apply these results to prove Theorem 24 since they do not
involve composite theories. Another difference with Kozen’s approach is that we
do not include the monad units in Rsep (Definition 33). By omitting the units,
we obtain unique normal forms in Rsep in the classic rewriting sense, but no
terminal object in the corresponding rewrite category. This allows our reasoning
to follow classic rewrite arguments more closely.

A result akin to Theorem 40 appears in the literature on polygraphs [2, 3.3.6
Theorem]. Polygraphs are generalisations of graphs that can serve as presenta-
tions of categories. The notion of distributive law between categories presented
by polygraphs seems related to the notion of distributive law between Lawvere
Theories as described by Cheng [8], but the precise connection is not explained
in [2] and remains to be explored.

7.2 Future work

There are several directions for future work. We showed that termination of
E′ (as TRS) is sufficient for ES ∪ ET ∪ E′ to axiomatise the composite theory
(Lemma 43), and that taking equations in E′ to have layers (1, 1) → (n, 1)
ensures termination (Lemma 46). We would like to identify other criteria for
termination, and make more use of term rewriting techniques. We speculate
that one could allow layers (1, 1)→ (2, 2) in which some symbol in the left-hand
side is absent from the right-hand side in order to avoid problems such as in
Example 45 with ab→ bbaa.

In light of negative results concerning monad compositions [18, 33, 36, 10],
there has been much interest in understanding the limits of monad composition.
Positive results using algebraic methods were given in [9]. Another approach has
been to generalise to so-called weak distributive laws [12, 13]. Presentations of
monads arising from the composition of monads via a weak distributive law,
in particular monads for nondeterminism and probabilities, have been given
in [6, 14]. These presentations are obtained by adding a simple distribution
axiom to the two underlying theories, similar to our results in Section 6, but
the resulting theory is no longer a composite theory as the essential uniqueness
modulo (S,T) is not guaranteed to hold. Another future line of work would be
to extend the current correspondence to weak distributive laws [12, 13] thereby
giving a definition of weak composite theories. Such a correspondence would allow
for a more thorough study of weak distributive laws on the algebraic level, and
could perhaps lead to no-go theorems for weak distributive laws.

Alternatively, the current correspondence could also be extended to account
for multi-sorted algebraic theories, and by such means defining multi-sorted dis-
tributive law.
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