Optics, functorially

Adriana Balan ${ }^{1}$
adriana.balan@upb.ro

Silviu-George Pantelimon
silviu.pantelimon@upb.ro

National University of Science and Technology POLITEHNICA Bucharest

Bidirectional transformations are mechanisms in software development that enable consistent interaction with data [5]. A well-known example is the concept of lenses, which consists of two methods: get, used to retrieve values from data, and put, employed to update existing data with a new value [7]. Recently, a wide variety of such bidirectional data accessors, including lenses, have been successfully formalised as (mixed) optics [4], using the categorical machinery of profunctors and of Tambara modules.
For simplicity, we shall work in the standard non-enriched setting. Let \mathscr{M} be a monoidal category acting on two (small) categories \mathscr{A} and \mathscr{B} [1]. The category of optics Optic ${ }_{\mathscr{A}, \mathscr{B}}$ has as objects pairs of objects of \mathscr{A} and \mathscr{B}, respectively, and hom-sets

$$
\mathbf{O p t i c}_{\mathscr{A}, \mathscr{B}}\left(\left(A^{\prime}, B^{\prime}\right),(A, B)\right)=\int^{M \in \mathscr{M}} \mathscr{A}\left(A^{\prime}, M \bullet A\right) \times \mathscr{B}\left(M \bullet B, B^{\prime}\right)
$$

The examples include cases where \mathscr{A}, \mathscr{B} are not necessarily small, but the above coend still exists. The monoidal actions of \mathscr{M} on \mathscr{A}, respectively \mathscr{B} represent the two different ways in which the categories \mathscr{A}, \mathscr{B}, interact with the monoidal category \mathscr{M} : one when the data structure is decomposed, witnessed in the above coend by the hom-set $\mathscr{A}\left(A^{\prime}, M \bullet A\right)$, and another one, possibly different, when it is reconstructed, via $\mathscr{B}\left(M \bullet B, B^{\prime}\right)$. Lenses arise when \mathscr{M} is a category with finite products and $\mathscr{A}=\mathscr{B}=\mathscr{M}$ with action given by the cartesian product.
It has been observed that the datum $(\mathscr{M}, \mathscr{A}, \mathscr{B})$ (actually, the actions of \mathscr{M} on \mathscr{A} and on \mathscr{B} rather than the categories \mathscr{A} and \mathscr{B} themselves) induces a monad profunctor on $\mathscr{A}^{\text {op }} \otimes \mathscr{B}[4,8,9]$, such that $\mathbf{O p t i c} \mathscr{A}_{\mathscr{A}}, \mathscr{B}$ is the Kleisli object for this monad in the bicategory of profunctors Prof. In particular, there is an identity-on-objects functor $\mathscr{A}^{\text {op }} \otimes \mathscr{B} \longrightarrow$ Optic $_{\mathscr{A}, \mathscr{B}}$. The \mathscr{M}-actions on \mathscr{A} and on \mathscr{B} extend to an action of \mathscr{M} on optics, provided that \mathscr{M} is symmetric monoidal [3].
In the case $\mathscr{A}=\mathscr{B}=\mathscr{M}$ and the actions were given by the underlying tensor product, it was shown that correspondence $\mathscr{M} \mapsto$ Optic $_{\mathscr{M}, \mathscr{M}}$ becomes an endofunctor on the 2-category of symmetric monoidal categories and strong monoidal functors [9]. There is however a drawback. Identification of actions with the underlying monoidal product forbids any flexibility on optics, and does not comply with the plethora of existing examples [4]. How to preserve parametricity of optics in the two \mathscr{M}-actions, and in the same time, gain functoriality? Our main result provides an answer:

Theorem 1. The correspondence $(\mathscr{A}, \mathscr{B}) \mapsto \mathbf{O p t i c}_{\mathscr{A}, \mathscr{B}}$ determines a functor

$$
\text { Optic }: \mathscr{M}-\text { Act }_{c} \otimes \mathscr{M}-\text { Act }_{l} \longrightarrow \mathbf{C a t}
$$

from the Gray tensor product of the 2-categories of \mathscr{M}-actions with lax, respectively colax \mathscr{M}-morphisms.
In the domain of the Optic functor, on the level of 1-cells, instead of a single strong monoidal functor, we consider pairs of \mathscr{M}-morphisms of mixed variance, with the intuition that these can act individually on each \mathscr{M}-action of the optic rather than simultaneously on both. Such a pair (f, g) consists of functors $f: \mathscr{A} \longrightarrow$ \mathscr{A}^{\prime} and $g: \mathscr{B} \longrightarrow \mathscr{B}^{\prime}$, where f is an \mathscr{M}-colax morphism (equipped with a convenient natural transformation $\operatorname{cst}_{M, A}: f(M \bullet A) \longrightarrow M \bullet f A$), respectively g is an \mathscr{M}-lax morphism (with st ${ }_{M, B}: M \bullet g B \longrightarrow g(M \bullet B)$). The resulting functor between categories of optics $\operatorname{Optic}(f, g): \mathbf{O p t i c}_{\mathscr{A}, \mathscr{B}} \longrightarrow \mathbf{O p t i c}_{\mathscr{A}^{\prime}, \mathscr{B}^{\prime}}$ is induced by the composite

$$
\mathscr{A}\left(A^{\prime}, M \bullet A\right) \otimes \mathscr{B}\left(M \bullet B, B^{\prime}\right) \rightarrow \mathscr{A}^{\prime}\left(f A^{\prime}, f(M \bullet A)\right) \otimes \mathscr{B}^{\prime}\left(g(M \bullet B), g B^{\prime}\right) \rightarrow \mathscr{A}^{\prime}\left(f A^{\prime}, M \bullet f A\right) \otimes \mathscr{B}^{\prime}\left(M \bullet g B, g B^{\prime}\right)
$$

[^0]and commutes with the identity-on-objects functors $\mathscr{A}^{\mathrm{op}} \otimes \mathscr{B} \longrightarrow \mathbf{O p t i c}_{\mathscr{A}, \mathscr{B}}$. If \mathscr{M} is symmetric monoidal, Optic (f, g) also preserves the \mathscr{M}-action on optics.

Remark 2. While lax \mathscr{M}-morphisms between \mathscr{M}-actions are a mild generalisation of strong functors on monoidal categories, the colax \mathscr{M}-morphisms have received much less attention in the literature (see however [2]), although they are not necessarily as rare as it might seem. We have observed that there is a one-to-one correspondence between co-pointed endofunctors on a cartesian category \mathscr{M} and costrong ones (that is, colax with respect to the induced action of \mathscr{M} on itself). In particular, comonads on cartesian categories are automatically costrong.

Example 3. We would like to see now the Optic construction of Theorem 1 at work in the familiar case of lenses. Let \mathscr{M} be a category with finite products and $\mathscr{A}=\mathscr{B}=\mathscr{M}$, with action given by the cartesian product. Then pairs (f, g) of \mathscr{M}-colax and lax morphisms make now sense if f is a costrong endofunctor on \mathscr{M}, and g is a strong one. Consider a lens (get : $A^{\prime} \longrightarrow A$, put: $A^{\prime} \times B \longrightarrow B^{\prime}$). It transforms into a lens (get ${ }^{\prime}: f A^{\prime} \longrightarrow f A$, put $^{\prime}: f A^{\prime} \times g B \longrightarrow g B^{\prime}$), with get ${ }^{\prime}=f$ get. However, put does not look so simple. To gain some insight, recall from [6] that optics (in the general case) promote to a 2-category whose 2-cells explicitly keep track of the internal parameter M, and that in the cartesian case, there is a local adjunction between this 2-category of optics and the (discrete) 2-category of lenses, exhibiting the latter as a locally coreflective 2-subcategory of the former. Then $\mathbf{O p t i c}(f, g)$ is precisely a morphism of adjunctions between these.
A recent generalisation of (mixed) optics are dependent optics [10], where the two actions of the monoidal category \mathscr{M} are replaced by a pair of pseudofunctors $\mathbf{B}^{\circ p} \longrightarrow \mathbf{C a t}$, where \mathbf{B} is a bicategory. Taking \mathbf{B} to be the delooping of \mathscr{M} recovers usual optics. Theorem 1 extends to dependent optics where lax and colax \mathscr{M}-morphisms are replaced by lax and colax natural transformations.

References

[1] J. Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar, pages 1-77. Springer Berlin, Heidelberg, 1967.
[2] R.F. Blute, J.R.B. Cockett, and R.A.G. Seely. Categories for computation in context and unified logic. J. Pure Applied Algebra, 116(1):49-98, 1997.
[3] M. Capucci, B. Gavranović, J. Hedges, and E. F. Rischel. Towards foundations of categorical cybernetics. In ACT 2021, volume 372 of Electron. Proc. Theor. Comput. Sci., pages 235-248. Open Publishing Association, 2022.
[4] B. Clarke, D. Elkins, J. Gibbons, F. Loregian, B. Milewski, E. Pillmore, and M. Román. Profunctor optics, a categorical update. Compositionality, 6(1):1-39, 2024.
[5] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators for bi-directional tree transformations: a linguistic approach to the view update problem. In POPL '05, pages 233-246. ACM, 2005.
[6] B. Gavranović. Space-time tradeoffs of lenses and optics via higher category theory, 2022. arXiv2209.09351.
[7] F. J. Oles. Type algebras, functor categories and block structure. In Algebraic Methods in Semantics, pages 543-573. Cambridge Univ. Press, 1986.
[8] C. Pastro and R. Street. Doubles for monoidal categories. Theory Applic. Categ., 21(4):61-75, 2008.
[9] M. Riley. Categories of optics, 2018. arXiv1809.00738.
[10] P. Vertechi. Dependent optics. In ACT2022, volume 380 of Electron. Proc. Theor. Comput. Sci., pages 128-144. Open Publishing Association, 2023.

[^0]: ${ }^{1}$ Support is acknowledged by the research project GNaC2023 ARUT Tensor Products and Nuclearity, project number 88/11.10.2023.

