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Bidirectional transformations are mechanisms in software development that enable consistent interaction
with data [5]. A well-known example is the concept of lenses, which consists of two methods: get, used to
retrieve values from data, and put, employed to update existing data with a new value [7]. Recently, a wide
variety of such bidirectional data accessors, including lenses, have been successfully formalised as (mixed)
optics [4], using the categorical machinery of profunctors and of Tambara modules.
For simplicity, we shall work in the standard non-enriched setting. Let M be a monoidal category acting on
two (small) categories A and B [1]. The category of optics OpticA ,B has as objects pairs of objects of A
and B, respectively, and hom-sets

OpticA ,B((A′, B′), (A,B)) =

∫ M∈M

A (A′,M •A)× B(M •B,B′)

The examples include cases where A ,B are not necessarily small, but the above coend still exists. The
monoidal actions of M on A , respectively B represent the two different ways in which the categories A ,B,
interact with the monoidal category M : one when the data structure is decomposed, witnessed in the
above coend by the hom-set A (A′,M •A), and another one, possibly different, when it is reconstructed, via
B(M •B,B′). Lenses arise when M is a category with finite products and A = B = M with action given
by the cartesian product.
It has been observed that the datum (M ,A ,B) (actually, the actions of M on A and on B rather than
the categories A and B themselves) induces a monad profunctor on A op ⊗B [4, 8, 9], such that OpticA ,B

is the Kleisli object for this monad in the bicategory of profunctors Prof . In particular, there is an identity-
on-objects functor A op ⊗ B −→ OpticA ,B. The M -actions on A and on B extend to an action of M on
optics, provided that M is symmetric monoidal [3].
In the case A = B = M and the actions were given by the underlying tensor product, it was shown
that correspondence M 7→ OpticM ,M becomes an endofunctor on the 2-category of symmetric monoidal
categories and strong monoidal functors [9]. There is however a drawback. Identification of actions with
the underlying monoidal product forbids any flexibility on optics, and does not comply with the plethora of
existing examples [4]. How to preserve parametricity of optics in the two M -actions, and in the same time,
gain functoriality? Our main result provides an answer:

Theorem 1. The correspondence (A ,B) 7→ OpticA ,B determines a functor

Optic : M-Actc ⊗ M-Actl −→ Cat

from the Gray tensor product of the 2-categories of M -actions with lax, respectively colax M -morphisms.

In the domain of the Optic functor, on the level of 1-cells, instead of a single strong monoidal functor, we
consider pairs of M -morphisms of mixed variance, with the intuition that these can act individually on each
M -action of the optic rather than simultaneously on both. Such a pair (f, g) consists of functors f : A −→
A ′ and g : B −→ B′, where f is an M -colax morphism (equipped with a convenient natural transformation
cstM,A : f(M •A) −→ M • fA), respectively g is an M -lax morphism (with stM,B : M • gB −→ g(M •B)).
The resulting functor between categories of optics Optic(f, g) : OpticA ,B −→ OpticA ′,B′ is induced by
the composite

A (A′,M•A)⊗B(M•B,B′) // A ′(fA′, f(M•A))⊗B′(g(M•B), gB′) // A ′(fA′,M•fA)⊗B′(M•gB, gB′)
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and commutes with the identity-on-objects functors A op ⊗B −→ OpticA ,B. If M is symmetric monoidal,
Optic(f, g) also preserves the M -action on optics.

Remark 2. While lax M -morphisms between M -actions are a mild generalisation of strong functors on
monoidal categories, the colax M -morphisms have received much less attention in the literature (see how-
ever [2]), although they are not necessarily as rare as it might seem. We have observed that there is a
one-to-one correspondence between co-pointed endofunctors on a cartesian category M and costrong ones
(that is, colax with respect to the induced action of M on itself). In particular, comonads on cartesian
categories are automatically costrong.

Example 3. We would like to see now the Optic construction of Theorem 1 at work in the familiar case of
lenses. Let M be a category with finite products and A = B = M , with action given by the cartesian
product. Then pairs (f, g) of M -colax and lax morphisms make now sense if f is a costrong endofunctor
on M , and g is a strong one. Consider a lens (get : A′ −→ A, put : A′ × B −→ B′). It transforms into a
lens (get′ : fA′ −→ fA, put′ : fA′ × gB −→ gB′), with get′ = fget. However, put′ does not look so simple.
To gain some insight, recall from [6] that optics (in the general case) promote to a 2-category whose 2-cells
explicitly keep track of the internal parameter M , and that in the cartesian case, there is a local adjunction
between this 2-category of optics and the (discrete) 2-category of lenses, exhibiting the latter as a locally
coreflective 2-subcategory of the former. Then Optic(f, g) is precisely a morphism of adjunctions between
these.

A recent generalisation of (mixed) optics are dependent optics [10], where the two actions of the monoidal
category M are replaced by a pair of pseudofunctors Bop −→ Cat, where B is a bicategory. Taking B to
be the delooping of M recovers usual optics. Theorem 1 extends to dependent optics where lax and colax
M -morphisms are replaced by lax and colax natural transformations.
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