
Effectful Trace Semantics: Extended Abstract
Filippo Bonchi
Università di Pisa

Elena Di Lavore
Università di Pisa

Tallinn University of Technology

Mario Román
University of Oxford

Tallinn University of Technology

ABSTRACT
We introduce effectful streams, a coinductive semantic universe for
effectful dataflow programming and traces. In monoidal categories
with conditionals and ranges, we show that effectful streams par-
ticularize to families of morphisms satisfying a causality condition.
Effectful streams allow us to develop notions of trace and bisim-
ulation for effectful Mealy machines; we prove that bisimulation
implies effectful trace equivalence.

Effectful traces. Traces are sequences that record the outputs of
a transition system or a state machine along an execution. They
constitute a successful and flexible formalism that can be adapted to
the different flavours of transition systems (from non-deterministic
to stochastic). Traces are also a semantic universe of interest for da-
taflow networks; in fact, they help extending Kahn’s original model
[Kah74] to a compositional semantics for the non-deterministic
case [Jon89].

1 SETTING: EFFECTFUL CATEGORIES
The categorical setting we choose is that of effectful copy-discard
categories: they allow us to distinguish between values, pure, and
effectful morphisms.

Definition 1.1. An effectful copy-discard category is a triple of
categories with two identity-on-objects functors, V → P → C,
where (i) V is a cartesian monoidal category; (ii) P is a monoidal
category; and (iii) C, is a premonoidal category.

The first identity-on-objects functor, V → C, must preserve the
monoidal structure strictly; the second identity-on-objects functor,
P → C, must preserve the premonoidal structure strictly.

Remark 1.2. Do-notation is the internal language of effectful copy-
discard categories: it constructs the free such category over a sig-
nature.

Return
Γ ⊢ 𝑡1 : 𝑋 1 ... Γ ⊢ 𝑡𝑛 : 𝑋𝑛

Γ ⊩ return(𝑡1, ..., 𝑡𝑛) : 𝑋 1, ..., 𝑋𝑛

Variable

(𝑥𝑖 : 𝑋 𝑖 ) ∈ Γ ⊢ 𝑥𝑖 : 𝑋 𝑖

Value Generator
Γ ⊢ 𝑡1 : 𝑋 1 ... Γ ⊢ 𝑡𝑛 : 𝑋𝑛

Γ ⊢ 𝑓 (𝑡1, ..., 𝑡𝑛) : 𝑌
Pure Generator
𝑦1 : 𝑌 1, ..., 𝑦𝑚 : 𝑌𝑚, Γ ⊩ 𝑝 : 𝑍 1, ..., 𝑍𝑚 Γ ⊢ 𝑡1 : 𝑋 1, ..., Γ ⊢ 𝑡𝑛 : 𝑋𝑛

Γ ⊩ 𝑔(𝑡1, ..., 𝑡𝑛) → 𝑦1, ..., 𝑦𝑚 # 𝑝 : 𝑍 1, ..., 𝑍𝑚
Effectful Generator
𝑦1 : 𝑌 1, ..., 𝑦𝑚 : 𝑌𝑚, Γ ⊩ 𝑝 : 𝑍 1, ..., 𝑍𝑚 Γ ⊢ 𝑡1 : 𝑋 1, ..., Γ ⊢ 𝑡𝑛 : 𝑋𝑛

Γ ⊩ ℎ(𝑡1, ..., 𝑡𝑛) { 𝑦1, ..., 𝑦𝑚 # 𝑝 : 𝑍 1, ..., 𝑍𝑚

0This is an extended abstract for a manuscript currently submitted for review. For the
purpose of Open Access the Author has applied a CC BY public copyright licence to
any Author Accepted Manuscript version arising from this submission.

For the last three rules, we have one instance of the rule, respec-
tively, for each

• value, 𝑓 ∈ V(𝑋 1, ..., 𝑋𝑛 ;𝑌 );
• pure morphism, 𝑔 ∈ P(𝑋 1, ..., 𝑋𝑛 ;𝑌 1, ..., 𝑌𝑚);
• and effectful morphism ℎ ∈ E(𝑋 1, ..., 𝑋𝑛 ;𝑌 1, ..., 𝑌𝑚).

2 EFFECTFUL STREAMS
We introduce a definition of stream in an effectful copy-discard
category. An effectful stream consists of a process followed by an
effectful stream: a “memory” object allows the proccess to commu-
nicate with the rest of the stream.

Definition 2.1. An effectful stream, 𝒇 : 𝑨 → 𝑩, over an effect-
ful category (P,C) with inputs 𝑨 = (𝐴0, 𝐴1...) and outputs 𝑩 =

(𝐵0, 𝐵1, ...) is a triple consisting of
• 𝑀𝒇 ∈ P𝑜𝑏 𝑗 , the memory;
• 𝒇◦ : 𝑨◦ { 𝑀𝒇 ⊗ 𝑩◦, the first action, or head;
• 𝒇+ : 𝑀𝒇 · 𝑨+ { 𝑩+, the tail of the stream.

Effectful streams are quotiented by dinaturality over the memory:
the minimal equivalence (∼) such that (𝑀𝒇 ,𝒇

◦,𝒇+) ∼ (𝑀𝒈,𝒈◦,𝒈+),
for each pure morphism 𝑟 : 𝑀𝒈 → 𝑀𝒇 in P such that 𝒈◦ #𝑟 = 𝒇◦ and
𝑟 ·𝒇+ ∼ 𝒈+. Effectful streams from𝑨 to𝑩, quotiented by dinaturality
form a set, Stream(P,C) (𝑨;𝑩).

Remark 2.2. Definition 2.1 can be recast in coalgebraic terms. The
set Stream(P,C) (𝑨;𝑩) of effectful streams from𝑨 to𝑩 in the effect-
ful category (P,C) is the final fixpoint of the functor 𝜙 : [(C𝜔 )o ×
C𝜔 , Set] → [(C𝜔 )o × C𝜔 , Set] defined by

𝜙 (Q) (𝑨,𝑩) B
∫ 𝑀 ∈P

homC (𝑨◦;𝑀 ⊗ 𝑩◦) × Q (𝑀 · 𝑨+;𝑩+) .

2.1 Characterization as Causal Processes
Even if the definition seems technical, effectful streams still coincide
with a notion of causal process in monoidal categories.

Definition 2.3. A causal process, 𝒇 : 𝑿 → 𝒀 , in a copy-discard
category (V, P), is a family of morphisms

𝑓𝑛 : 𝑋0 ⊗ . . . ⊗ 𝑋𝑛 → 𝑌 0 ⊗ . . . ⊗ 𝑌𝑛

that are causal: each 𝑓𝑛 ⊗ is a marginal of 𝑓𝑛+1. Explicitly, there
must exist morphisms 𝑐𝑛 : 𝑌 0 ⊗ ... ⊗ 𝑌𝑛 ⊗ 𝑋 0 ⊗ ... ⊗ 𝑋𝑛+1 → 𝑌𝑛+1,
the conditionals, that satisfy the following equation1.

𝑓𝑛+1(
⃗⃗⃗
𝑥𝑛+1) → ⃗⃗

𝑦𝑛+1} =
𝑓𝑛(

⃗⃗⃗
𝑥𝑛) → ⃗⃗

𝑦𝑛
𝑐𝑛(

⃗⃗
𝑦𝑛,

⃗⃗⃗
𝑥𝑛+1) → 𝑦𝑛+1

}
Causal processes over a copy-discard category (V, P) with quasi-

total conditionals [DLR23] form a copy-discard category. When
the base category also has ranges [DLdFR22], causal processes are
isomorphic to effectful streams.

1For convenience, we denote with ⃗⃗
𝑥𝑛 a list (𝑥0, . . . , 𝑥𝑛) of elements of𝑋0 ⊗ · · · ⊗𝑋𝑛 .



Filippo Bonchi, Elena Di Lavore, and Mario Román

Theorem 2.4. For a copy-discard category (V, P) with quasi-total
conditionals and ranges, the category of effectful streams is monoidal
and isomorphic to the monoidal category of causal processes,

Stream(Tot(P), P) � Causal(P) .

3 EXAMPLE: STREAM CIPHER
Stream cipher protocols encrypt messages of any given length.
They are a repeated version of the one-time pad protocol. A first
party (e.g. Alice) wants to send a private message, 𝒎, to a second
party (e.g. Bob), through a public channel; both apply the XOR
operation against a pre-shared key 𝒌: an attacker listening to the
public channel will only receive the encrypted message, 𝒎 ⊕ 𝒌 ,
which is perfectly uninformative.

cipher(m)◦ =
init(){ ()
rand𝑎(){ 𝑘𝑎
rand𝑏(){ 𝑘𝑏
return(𝑚 ⊕ 𝑘𝑎 ⊕ 𝑘𝑏,𝑚 ⊕ 𝑘𝑎)

cipher(m)+◦ =
rand𝑎(){ 𝑘𝑎
rand𝑏(){ 𝑘𝑏
return(𝑚 ⊕ 𝑘𝑎 ⊕ 𝑘𝑏,𝑚 ⊕ 𝑘𝑎)
cipher(m)++ = cipher(m)+

Let us discuss security for the stream cipher protocol by giving
it appropriate semantics.

Of course, it is impossible to prove that the stream cipher pro-
tocol is exactly equal to a secure channel: it can be easily seen
that there exist no perfect random generators in the category of
finitely-supported distributions, Stoch. Instead, we will prove that
the protocol is “approximately equal” (≈) to the secure channel,
assuming a pseudorandom number generator tht is “approximately
equal” to a perfect one.

Assumption 3.1 (Broadbent and Karvonen, [BK23, §7.4]). Let (≈
) be a congruence, preserved by composition and tensoring. An
(≈)-pseudorandom number generator over a finite alphabet is a
deterministic morphism, prng : Seed → Char ⊗ Seed, that satisfies
the following equation,

unifs()→𝑔

prng(𝑔)→ℎ,𝑘
return(ℎ,𝑘)

 ≈
unifs()→𝑔

unifc()→𝑘

return(𝑔,𝑘)


where unif𝑠 and unif𝑐 are the uniform distribution on seeds and
characters.

We now interpret the generators of the stream cipher in terms
of the following fragments of do-notation.

Jrand𝑎K(𝑔𝑎,𝑔𝑏)=
prng(𝑔𝑎)→ℎ𝑎,𝑘
return(ℎ𝑎,𝑔𝑏,𝑘)

Jrand𝑏K(𝑔𝑎,𝑔𝑏)=
prng(𝑔𝑏)→ℎ𝑏,𝑘
return(𝑔𝑎,ℎ𝑏,𝑘)

JseedK(𝑔𝑎,𝑔𝑏)=
unif()→𝑔
return(𝑔,𝑔)

Finally, we can state security for the stream cipher: it means that
it is approximately equal to using secure channel that sends the
message directly from Alice to Bob and outputs random noise to
an external observer.

Definition 3.2. The secure channel is the following morphism in
the syntactic category Cipher.

secure◦(𝑚) =
unif()→𝑛
return(𝑚,𝑛);

secure+ = secure

Theorem 3.3. The interpretation of the stream cipher is approxi-
mately equal to the interpretation of the secure channel,

JcipherK ≈ JsecureK.

4 EFFECTFUL MEALY MACHINES
Finally, we employ effectful streams as semantic universe for effect-
ful state machines: their trace is the effectful stream they generate.

Definition 4.1. An effectful Mealy machine in an effectful copy-
discard category, (V, P,C), taking inputs on 𝐴 ∈ Obj(C) and pro-
ducing outputs in 𝐵 ∈ Obj(C), is a triple (𝑈 , 𝑖, 𝑓 ) consisting of
a state space 𝑈 ∈ Obj(C), an initial state 𝑖 : 𝐼 → 𝑈 in C, and a
transition morphism, 𝑓 : 𝑈 ⊗ 𝐴 { 𝑈 ⊗ 𝐵 in C.

Every effectful Mealy machine induces an effectful stream that
represents its execution. An object 𝐴 can be repeated to form a
stream J𝐴K, defined by J𝐴K◦ = 𝐴 and J𝐴K+ = J𝐴K. Analogously, a
transition morphism, 𝑓 : 𝑈 ⊗ 𝐴 → 𝑈 ⊗ 𝐵 with state space 𝑈 , can
be repeated to form an effectful stream J𝑓 K : 𝑈 · J𝐴K → J𝐵K defined
by J𝑓 K◦ = 𝑓 and J𝑓 K+ = J𝑓 K. When the transition morphism has
an initial state, 𝑠0, it defines a Mealy machine, and we can use it to
construct an effectful stream that represents the execution trace of
the Mealy machine. The operation · attaches the initial state 𝑖 at
the beginning of the execution of the machine 𝑓 and gives its trace.

Definition 4.2. The trace tr(𝑈 , 𝑖, 𝑓 ) : J𝐴K → J𝐵K of an effectful
Mealy machine (𝑈 , 𝑖, 𝑓 ) : 𝐴 → 𝐵 is the effectful stream defined by
tr(𝑈 , 𝑖, 𝑓 ) = 𝑖 · J𝑓 K. We say that two Mealy machines are trace-
equivalent if their traces coincide.

Definition 4.3. A homomorphism of effectful Mealy machines
with the same inputs and outputs, (𝑈 , 𝑖, 𝑓 ) ⇒ (𝑉 , 𝑗, 𝑔), is a value
morphism 𝛼 : 𝑈 → 𝑉 such that 𝑖 # 𝛼 = 𝑗 and moreover

𝑓 (𝑖, 𝑥){𝑢1, 𝑦
return(𝛼(𝑢1),𝑦)

}
=

𝑔(𝛼(𝑖),𝑥){ 𝑣1,𝑦
return(𝑣1,𝑦)

}
.

Theorem 4.4. We say that two effectful Mealy machines are bisim-
ilar if they are connected by homomorphisms. This coincides with the
usual definition in Kleisli categories of monds. If two effectful Mealy
machines are bisimilar, then they are trace equivalent.

REFERENCES
[BK23] Anne Broadbent and Martti Karvonen. Categorical composable cryptog-

raphy: extended version. Log. Methods Comput. Sci., 19(4), 2023. URL:
https://doi.org/10.46298/lmcs-19(4:30)2023, doi:10.46298/LMCS-19(4:
30)2023.

[DLdFR22] Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal streams
for dataflow programming. In Proceedings of the 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’22, New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3531130.
3533365.

[DLR23] Elena Di Lavore and Mario Román. Evidential decision theory via partial
markov categories. In 2023 38th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), pages 1–14, 2023. doi:10.1109/LICS56636.
2023.10175776.

[Jon89] Bengt Jonsson. A fully abstract trace model for dataflow networks. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 155–165, 1989.

[Kah74] Gilles Kahn. The semantics of a simple language for parallel programming.
Information processing, 74(471-475):15–28, 1974.

https://doi.org/10.46298/lmcs-19(4:30)2023
https://doi.org/10.46298/LMCS-19(4:30)2023
https://doi.org/10.46298/LMCS-19(4:30)2023
https://doi.org/10.1145/3531130.3533365
https://doi.org/10.1145/3531130.3533365
https://doi.org/10.1109/LICS56636.2023.10175776
https://doi.org/10.1109/LICS56636.2023.10175776

	Abstract
	1 Setting: Effectful Categories
	2 Effectful Streams
	2.1 Characterization as Causal Processes

	3 Example: stream cipher
	4 Effectful Mealy Machines
	References

