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Abstract. We extend the functorial approach to automata by Colcom-
bet and Petrigan [6] from the category of sets to any W-topos and estab-
lish general Myhill-Nerode theorems in our setting, including an explicit
relationship between the syntactic monoid and the transition monoid
of the minimal automaton. As a special case we recover the result of
Bojanczyk, Klin and Lasota [4] for orbit-finite nominal automata by
considering automata in the Myhill-Schanuel topos of nominal sets.
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Introduction

Automata theory appeared in the second half of the XXth century. Automata are
simple formal machines meant to recognise languages, that is, sets of finite words
over a finite alphabet. The fundamental theorem, first proven by Kleene [10]
in 1956, characterises those languages that are recognised by finite automata.
Two years later, Nerode |14] published another characterisation of this class of
languages using an equivalence relation on words, closely related to a notion
of a “minimal” automaton. More recently, Colcombet and Petrigan [6] gave an
entirely categorical definition of automata, in particular making transparent the
construction of the minimal automaton by means of purely categorical tools such
as Kan extensions and (orthogonal) factorisation systems.

Our purpose here is to extend the categorical approach to automata theory
by Colcombet and Petrisan [6] to more general contexts than those considered
by the authors, namely to automata in an arbitrary W-topos. Topos theory is
a far-reaching categorical generalisation of set theory with a strong topological
flavour; the historic examples of toposes are those categories of sheaves over a
topological space, but also categories of continuous actions of a topological group
on discrete spaces. One of the notions crucial to the definition of an automaton
in such a general context is “finiteness” and we will consider two different notions
of finiteness which are well-established in topos theory: dK-finiteness (decidable
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Kuratowski finiteness) and decomposition-finiteness, both reducing to the classi-
cal notion of a finite set in the topos of sets. For both notions of finiteness we get
a corresponding Myhill-Nerode Theorem characterising languages with a Nerode
congruence of “finite type” as those recognised by “finite type” automata. The
key property beneath these general Myhill-Nerode Theorems is the stability of
“finite” objects under taking subquotients.

In Sections [I] and 2] we give definitions and proprieties about toposes and
finiteness conditions we will consider. In Section [3| we enrich the functorial ap-
proach of Colcombet and Petrigsan and use it to deduce Myhill-Nerode type the-
orems, and in the last sections we explore automata theory in specific toposes:
toposes of G-sets for a discrete group G (Section and automata in the Myhill-
Schanuel topos of nominal sets (Section [f)).

The main contribution here is the generalisation of the Colcombet and
Petrigan framework, and the Myhill-Nerode theorems in other toposes than Set.
Each theorem depends on a notion of “finiteness”, and while Kuratowski finite-
ness is one of the most important notion of finiteness (for it is definable in any
elementary topos and covers finite sets, finite coverings of topological spaces,
and finite discrete group actions), it is not in general stable under subquotients,
which is the key ingredient for those theorems.

Notations

We use the diagrammatical order for composition: if f: A —- Bandg: B — C
are morphisms of some category, fg : A — C is their composition. By “factori-
sation system” we will always mean “orthogonal factorisation system” unless

stated otherwise. If 2 <~ & <& 9 is a diagram of functors, then we write
L 4 R the fact that L is left adjoint to R and will usually denote the unit by
1 :ide = LR and the counit by € : RL = idg. For any morphism a : Lc — d of

2 we denote by a™ : ¢ = Rd of € its adjunct with respect to this adjunction,
and for any morphism b : ¢ — Rd of €, b" : Lc — d of 2. Finally, if it exists,
we denote by () an initial object and 1 a terminal object.

1 Toposes

Definition 1. An (elementary) topos is a category £ with finite limits, expo-
nentials (i.e. for each object B, the product by B endofunctor (—) X B has a
right adjoint denoted by (—)P with counit evP : B x (=) = idg) and a sub-

object classifier, that is a pointed object T : 1 — 2 such that for each object A
and subobject S — A, there exists a unique morphism xs : A — (2 called the
characteristic map such that the following diagram

S ——1

\[ - lT is a pullback.

Xs



Ezample 1. Examples of toposes are categories BG = [G °P, Set] where G is a
discrete group seen as a single-object groupoid, and B G is (equivalent to) the
category of G-sets and equivariant functions: the subobject classifier is any two
element set with trivial G action, exponentials Y are sets of mere functions
f: X — Y endowed with the action (f-g)(x) = f(z-g~!)-g. For topological G,
the category of continuous G-sets is also a topos, also denoted by B G, cf. Mac
Lane and Moerdijk [12, Section III1.9]. Most famously, categories of sheaves Sh B
over a topological space B (equivalent to the category of étalé spaces over B i.e.
local homeomorphisms p : E — B) are also toposes.

Remark 1. A topos is enriched over itself: the hom-objects are the exponentials,
and we shall denote by comp, g ¢ : BA x 0B — 4 the composition morphisms

va xcP vE
defined as adjuncts of A x B4 x CB SEXT , px 0B 2, C, and the identities

by idi : 1 — A“ defined as the adjunct of id4 : A — A. Recall that exponentials
define an internal hom functor £ °P x& — &, (A, B) — B and forall f : A < A’,
g: X+ X' h:B— B anda:Ax X — Bin &:

((f x g)ah)™ = g(a™)h?.
We recall useful definitions on objects we will use:
Definition 2. Let £ be a topos and A any of its objects.

1. A subobject S < A is complemented if there exists a subobject C < A such
that SUC = A and SNC = 0.
(ida,id A

2. A is decidable if the diagonal Ay : A <—)> A x A is complemented.
3. A is connected if it admits exactly two complemented subobjects O and A.

Amongst the examples cited, a space étalé over a base space B is connected in
the topos Sh B iff it is connected as a topological space, and a G-set is connected
iff transitive. Any G-set is decidable because B G is Boolean:

Definition 3. A topos is

1. Boolean if every object is decidable (cf. Acuna-Ortega and Linton [1, Obser-
vation 2.6]);

2. locally connected if each object is a sum of connected objects;

3. atomic if Boolean and locally connected.

A W-topos is a topos admitting a free monoid (X*,mx,ex) for every object X.

Remark 2. The terminology “W-topos” comes from Moerdijk and Palmgren [13].
A topos is a W-topos iff it has a so-called natural number object (i.e. the free
monoid generated by 1, cf. ibidem). A topos with countable coproducts is a
W-topos because then X* =" X"

Toposes B G are always atomic. A topos Sh B is locally connected iff B is as a
topological space. Both types of toposes are W-toposes, because cocomplete.



2 Notions of Finiteness

Definition 4. Let A be an object of an elementary topos £. The submonoid of
(24,V,0) generated by the singleton subobject {-}Ya : A < 24 (adjunct of the

ida,id
characteristic morphism of the diagonal Ay : A <M> A x A) is denoted by

K(A) and called the object of Kuratowski-finite subobjects of A.

In toposes BG for a discrete group G, K(A) is the set of finite subsets of A,
endowed with the subset action S - g := {s- g|s € S C A} (cf. Example [I)).

Definition 5. Let £ be a topos.

1. An object is called decomposition-finite if it is a finite coproduct of connected
subobjects.

2. An object A is Kuratowski-finite or K-finite if the global element 1 — 24
corresponding to A < A factors through K(A) < 024 (cf. Johnstone [7,
Subsection D5.4]). It is decidable Kuratowski finite (dK-finite) if it is also
decidable.

3. Let P be a non-empty class of points of € (left-adjoint left exact functors
x* : & = Set), an object A is P-stalkwise finite if for all points z* in P,
x*(A) is a finite set.

The dK-finite sheaves of Sh B are exactly finite coverings. Finiteness conditions
in toposes B G will be discussed in Sections [ and

Proposition 1. 1. In an atomic topos, decomposition-finiteness is stable under
taking subquotients.

2. In a Boolean topos, dK-finiteness is stable under taking subquotients.

3. In any topos, stalkwise finiteness is stable under taking subquotients.

Proof. 1. If C and D are connected subobjects of a same object X, then either
CUD = (), or CUD # ( is a complemented (because £ is Boolean) non-empty
subobject of connected C| therefore C' U D = C' and by the same argument,
CUD = D so that C = D. This shows that if },.; A; < > . ; B; with
connected A; and B; then I < J so that [ is finite when J is. In any topos,
homomorphic images of connected objects are connected, and this fact shows
that decomposition-finiteness is stable under taking quotients.

2. According to Johnstone [7, Lemma 5.4.4.ii], in any topos, K-finite objects
are stable under taking quotients, and if £ is Boolean, they are moreover
closed under taking subobjects (cf. Remark 5.4.20.ii=iii, ibidem).

3. Immediate because any point z* preserves epimorphisms (as a left adjoint)
and monomorphisms (as a left exact functor).

3 Automata in Toposes and Myhill-Nerode Theorems

Before enriching the approach of Colcombet and Petrigsan [6], we recall their
point of view. Consider a (complete deterministic) automaton (@, 4, F,§) on an



alphabet X' (any set), meaning @ is a set of states, i € Q the initial state, F C Q
the set of final states and 0 : Q x X — @ the transition function. The transition
function gives, by iteration, a right action of the free monoid X* generated by X
on the set Q. In particular, we can interpret the action in a functorial (classical)
way as a functor X* — Set where the monoid X* is seen as a category with
a single object st. Now the initial state i € @ can be seen as a global element
1 — @, and the subset F' of final states can be represented by its characteristic
morphism yr : @ — {2 where {2 is the subobject classifier of Set, namely any
two-element set of “truth values”. All this data can be expressed by a functor
Is — Set with source freely generated by the quiver

seX
. > m <
In —— st —— out
and the functor corresponding to the automaton (Q, 1, F, 0)

6(—,s),s€X

)

11— Q25 0

sends (in, st,out) to (1, Q, §2), > to the global element corresponding to i, < to
the characteristic function corresponding to F', and extends the previous functor
2% — Set. This correspondence is in fact a bijection. The automata then organise
as a (non-full) subcategory of a functor category. This approach merges the
algebraic and coalgebraic point of view: an automaton seen as an algebra lacks
terminal states, while an automaton seen as a coalgebra lacks an initial state.

Definition 6. Let £ be a W-topos, and fiz X any object of this topos, we call
an alphabet.

— A language on X is any subobject of X*.
— A (deterministic complete) automaton on the alphabet X is a quadruple
A= (Q,i, F,d) where
e () is the states object,
e i:1— Q is a global element, the initial state, of Q,
o [ is the subobject of Q of final states, which we identify with its char-
acteristic morphism xp : Q@ — {2, and
e §:(Q) x X — Q is the transition morphism.

There is a notion of a language recognised by an automaton. To define it, observe
that the adjunct 67 : X — Q% of § : Q x ¥ — Q, with respect to (=) xQ 4 (—)%,
takes values in an internal monoid (Q@, compg g o> idg). Because X* is the free
internal monoid, 67 extends uniquely to X* into an internal monoid morphism
we call §* : X* — QO.

Definition 7. The language recognised by the automaton A = (Q,i, F,0) de-
fined over X is the subobject L(A) of X* with characteristic morphism

o O 00 Xry o1

Automata A recognising a language L are called L-automata.



3.1 Languages and Automata as Enriched Functors

The definitions we will give in the following subsections are immediate gener-
alisations of the definitions of Colcombet and Petrigan [6], so that we will keep
essentially the same terminology.

Definition 8. Let X be an alphabet of a W-topos £. The E-category Ls;, called
the E-category of internal behaviours over the alphabet X, is the £-category freely
generated by the £-quiver Qx with three vertices in, st and out, and objects of
edges Qx(in,st) = 1 = Qx(st,out), Qx(st,st) = X and Q= (X,Y) = 0 for every
other cases. Spelt out, T is defined by:

Objects in, st and out.
Objects of morphisms given by the table:

Zs(},—)|in| st |out
in 1D Do
st UAPRIPoR
out |[0| 0|1

Composition morphisms being of the following form, depending on the do-
main and codomain of definition:
— o a2y pn
Tx X = 3*,
— X2 x1x=X* and
— if the source is () or the target is 1, then the composition is trivial.

Proposition 2. Automata A = (Q,4, F,0) over X are in bijective correspon-
dence with E-functors A :Ix, — £ sending (in, out) to (1, £2).

Proof. We use the fact that Zy is a free E-category: E-functors A sending
(in,out) to (1,42) correspond to £-quiver morphisms « : Qx — & sending
(in, out) to (1, £2), which correspond to automata (Q, 1, F,d) over X:

a takes (in, st,out) to (1, Q, 2)

- Oéin,st:i:]l_>62

— Qgpout = F7: 11— 29 adjunct of xp: Q=1 xQ — 2
— Qs =0 X = Q9 adjunct of §: Q x ¥ — Q.

Definition 9. The full sub-E-category of Iy spanned by the objects in and out

is denoted by Oy <% T and called the E-category of observable behaviours
over the alphabet .

Remark 3. All the non-trivial data of an E-functor F' : Oy — Set sending
(in,out) to (1,(2) is contained in Finouy : X% — 2, therefore such functors
bijectively correspond to languages L over Y and we denote by L the corre-
sponding functor. This bijection provides a notion of language recognised by
an automaton-as-a-functor which is coherent with the associated automaton as
shown in the next proposition.



Proposition 3. Under the bijection of Proposition[3 the restriction of an au-
tomaton A : Lx, — & to the sub-E-category Ox corresponds to the language L(A)
recognised by the automaton A corresponding to A i.e. L ‘A|o

Proof. Let A= (Q,i,F, ) be an automaton over X, then
L(A) = 3% 25 QQ X1y ot
corresponds through the natural bijection £(X*, 21) = £(1 x X*, 2) to

Tx 5 225 0 x 50 25 0 X5 0 (of. Remark'

oAy st 5t st
=1 x X* L—> Q x ¥* = 9 Xy 0 by definition of A

st,st

:nxx*%x*xz*”“%chx*—wg
m Ainst
1l x T* EEXT pe o pr B, e Dt o XE,
‘A t
=1 x £y 2 X

where (A;;, 4 ¥ 2*)A'S_t7§t m s A, o by E-functoriality of A, and (ex x X" )my =
1 x ¥* = X* by left unitality in the monoid X*. Then the morphism above is

(er Ay ou)” 0

~ Ai st
Ix X — X — Q
by definition of A and corresponds through £(1 x £*,2) = £(1, 2%") to

Q Ain,st

As ou .
122 o =22 ) n*

- * Ain ou * s 1
=1 22y pr D2, T Ziewt, X" by € functoriality of A

id5.

=1

5 Y Ain,out * . . . . . *
) 2= Dby right unitality in the monoid X

and finally going through the inverse natural bijection £(1,2%") = £(1 x
2%, 02) = E(X*, V), the morphism above is Ay, o @ 2% — 21,

3.2 Categories of Automata

We follow Colcombet and Petrisan [6] definition of automaton morphism, i.e. the
morphisms we consider are coalgebra morphisms that respects the initial state.

Definition 10. Let L : Og — & be a language over X in a W-topos €. The
category Auto(L) of L-automata has as objects the E-functors extending L along
the inclusion vy : Ox — Ix, and as morphisms E-natural transformations
o : A= B restricting to idp on Ox.

In some cases we will obtain an automaton recognising the language only up to
an automorphism of 2, so that A’ O might only be isomorphic to L.



Lemma 1 (Strictification of an automaton with respect to a language).
Let L be a language and A an automaton, both defined over an alphabet X.
If there exists an E-natural isomorphism ¢ : A|Oz = L, then there exists an
automaton B € Auto(L) isomorphic as an E-functor to A via i : A = B such
that 1x x b = @. The automaton B is constructed as the E-functor A with this
only difference:

—1,\Q
B . — Z* Ast,out QQ (Wouc) QQ

Zst,ou
It was one of the main insights of Colcombet and Petrisan [6, (2.2)] that the
minimal automaton recognising a given language can be constructed by factoris-
ing the canonical map from the initial automaton to the final automaton. This
remains true in our enriched context as we will see in the next subsections.

3.3 Initial and Terminal Automata as Enriched Kan Extensions

In our setting, automata are (strict) extensions of languages seen as E-functors
along the fully faithful £-functor ¢x : Ox — Ix. But in the case of (pointwise)
Kan extensions along a fully faithful functor, the Kan extensions are genuine
extensions up to isomorphism, and therefore provide two automata:

Proposition 4. In a W-topos &, the initial O(L) and terminal 1(L) automata
exist for any language L over any alphabet X; they are respectively the left and
the right £-enriched Kan extension of L : Ox — & along the fully faithful £-
functor 15 : Ox — Is:. They can be explicitly computed as follows:
= O(L)(st)|U(L)(st) = 02>
idge = O(L)inst|1(L)inse = (moxr)™: 2% — 2%
E*Z]* « ¥ :m2—| _ Q(L)St,st ]I(L)st,st — ((sz*)l—)l— 3 (QZ*)QE

QE* — X (77742'XL)4 = Q)(L)st,out H(L)st,out = (XBZ* )4 X = QQZ

where 1(L)s; s is obtained from Q2™ by the natural bijection E(Q*, Q¥ **") =
E(¥ (¥ )= EWNRT x 25,07 ) = E(Z*,(27)F)

As for Colcombet and Petrigan [6, Lemma 2.9], the Kan extensions, now enriched,
are computed pointwise; but here the formula (cf. Kelly [9 (2.2) with (4.24)])
only uses exponentials (resp. binary products), finite products (resp. coproducts,
finite because Zx has only three objects) and an equaliser (resp. coequaliser),
which all exist in €.

Proposition 5. In a W-topos &, let A be an L-automaton over an alphabet X,
the unique automaton morphism « from O(L) to A is given by

Qs :Ain,st DX — Q
and the unique automaton morphism 8 from A to 1(L) by

[

Al out * x
Bt = (Q x X* =5 ) Q = 2% wrt. £(Q x X, 02) =2 E(Q, 7).
In particular, the unique morphism from O(L) to 1(L) is
(mexp) ™ : 2 = 2F),



3.4 Minimal Automaton

We understand minimality with respect to a factorisation system, cf. Colcombet
and Petrisan [6, Subsection 2.2]:

Definition 11. In a category € endowed with a factorisation system (E, M),
we say an object X (E, M)-divides an object Y if there exists a span

ecE meM
—— 7 ——

X A Y

in €. An object is minimal if it divides any object of €.

We recall the key idea of Colcombet and Petrigsan [6, Lemma 2.3] to compute
the minimal automaton:

Proposition 6. Let € be a category with a factorisation system (E,M). If €
has an initial and a terminal object, then the object through which the unique ar-
row from the initial to the terminal object (E, M)-factorises is (E, M)-minimal.

However, here, we need the factorisation system to be on the category of au-
tomata which is a category of enriched functors. Therefore, we have to lift the
(epi, mono) factorisation system on & to the £-functors category [Zx,£]. Given
two V-functors and a V-natural transformation « : F = G, the pointwise fac-

torisation of a according to a given factorisation system, might only give an
unenriched functor. Thus, we need the factorisation to have more properties,
which leads to the definition of an enriched factorisation system.

Definition 12. Let V be a symmetric closed monoidal category, and € a V-

category. A factorisation system (E, M) on & is V-enriched if for all A P p

and X €M, Y, the following square

?(A,X) ZAM @Ay

J

€ (e, X) €(e)Y)
% (B,X) W ¢ (B,Y)

s a pullback in V.

One can characterise enriched factorisation systems amongst unenriched ones
using powers or copowers, according to Lucyshyn-Wright [11, Theorem 5.7]:

Proposition 7. If € has V-copowers (respectively V-powers), then a factorisa-
tion system (E, M) on € is enriched if and only if E is stable under V-copowers
(resp. M is stable under V-powers). This is in particular the case if € =€ is a
topos, and (E, M) is the (epi, mono) factorisation system.

An enriched factorisation system ensures that factorising enriched natural trans-
formations provides an enriched functor. Proposition [7] can be used to show:



Proposition 8. Let (E, M) be a V-factorisation system on 'V, and & a small V-
category. Then the classes E g of V-natural transformations that are pointwise
in E, and My of V-natural transformations that are pointwise in M form a
V-enriched factorisation system on [Z,V)].

A lifted factorisation system on [Z 5, &] can then be restricted to Auto(L):

Proposition 9. Any &-factorisation system on & can be lifted to Auto(L), so
that the factorisation of an automaton morphism is obtained as the pointwise
factorisation of the underlying £-natural transformation.

Proof. Consider a morphism o : A — B and its factorisation 4 5 F =% B in
[Z5,€&]. Then by unicity of the factorisation in £ we have:

F(in) F(out)

R R
\ 11/ m} /ldn

because o, = idin, = €inMin and aout = idout = €outMout SO that F’ ~ [, and
by Lemma [I] we can find a factorisation of o through an L- automaton.

The category Auto(L) is now canonically endowed with the pointwise (epi, mono)
factorisation system.

Definition 13. Let L be a language over an alphabet X in a W-topos €. The
automaton Min(L) through which the unique arrow from the initial automaton
to the terminal automaton factorises with respect to pointwise (epi, mono) fac-
torisation system is the minimal automaton of L.

The name “minimal automaton” designates this particular construction but it
is really minimal in the sense of Definition [T1}

Corollary 1. Let L be a language on an alphabet X in a W-topos £. The min-
imal automaton of L is a subquotient of any automaton that recognises L.

Proof. By Proposition |§| and |4 the category Auto(L) has pointwise (epi, mono)
factorisation system, initial and terminal objects, therefore Proposition [6] en-
sures Min(L) is minimal in this context i.e. Min(L) is a subquotient of every
L-automata.

3.5 Internal Nerode Congruence

In Set, the Nerode congruence of a language L over X' is an equivalence relation
on words over Y defined by u ~p, v iff for all words x, ur € L < vx € L. It is
strictly the same as saying u ~, v iff u='L = v~ ! L. Then the Nerode congruence
is merely the kernel pair of left division of L, u — uw~'L, which in turn is the
adjunct of (u,w) — xr(uw), namely the composite of monoid multiplication of
27 with xpr.



Definition 14. Let X' be an alphabet in a W-topos £. The Nerode congruenceﬂ
of a language L over X is the kernel pair =1, of

(’InEXL)4 X = QE*
where my is the multiplication of the free monoid X*.

Proposition 10. In a W-topos &, the states object of Min(L) is the quotient of
27 by the internal Nerode congruence.

Proof. By Corollary 1}, §(L) -5 1(L) factorises as
O(L) = Min(L) — 1(L)
and therefore we have an image factorisation of O(L)(st) N T(L)(st)
O(L)(st) — Min(L)(st) —» L(L)(st)

and the morphism above is (mxxz)™ according to Proposition |5l A topos £ is
regular and in a regular category, the kernel pair of a morphism is canonically
isomorphic to its image, so that Min(L)(st) = XX .

3.6 Myhill-Nerode Theorems for Different Finiteness Conditions

The following Myhill-Nerode theorems have two main cases of application: the
first is in Set, the classical Myhill-Nerode theorem stating that a language is
regular if and only if the Nerode congruence is of finite index (cf. Nerode [14]),
and the second in the topos Nom of nominal sets, proven for any G-sets topos
by Bojariczyk, Klin and Lasota [4] (where G is a discrete group or G is the
topological group of permutations of natural numbers acting on discrete spaces),
which states that a G-language (resp. nominal language) is regular, in the sense
that it is recognised by an orbit-finite deterministic G-automaton (resp. nominal
automaton) if and only if the quotient of the nominal set of words on the alphabet
by the Nerode congruence is orbit-finite. Our Theorem [I]is a generalisation and
another point of view on Bojariczyk, Klin and Lasota |4, Theorems 3.8 and 5.2].

Definition 15. Fach time we consider a finiteness condition (FC), we say an
automaton is (FC) if its states object is (FC). A language L is (FC)-regular if
it admits an (F'C) automaton that recognises it.

Theorem 1. Let L be a language on an alphabet X in a W-topos E.

1. For any non-empty class of points P of £, L is P-stalkwise-reqular iff Z’/"EL
is P-stalkwise finite.

2. If € atomic, L is decomposition-reqular iff E*EL is decomposition-finite.

3. If € is Boolean, L is K-regular iff X7_ —is K-finite.

1 Tt is not an internal monoid congruence, it is only a categorical congruence, namely
an internal equivalence relation.



Proof. By Corollary Min(L) exists and by Proposition Min(L)(st) = D2y
If there is some L-automaton A that is (FC) for one of those cases, then because
Min(L) divides A, Min(L)(st) = 27_ ~divides A(st) which is (FC), so by Propo-
Sition X5_, is also (FC).

3.7 The Syntactic Monoid

There exists an algebraic notion of recognition where the recogniser is a monoid
morphism (cf Jean-Eric Pin [15, Subsection IV.2.1]). With this point of view,
automata are merely presentations of such algebraic recognisers, given by the
transition monoid of the automaton. Amongst monoids recognising a language
there is a smallest recogniser with respect to monoid divisibility: the syntactic
monoid of a language. It can be defined abstractly as the quotient of the monoid
of words by a syntactic congruence, or simply by the fact it is the transition
monoid of the minimal automaton. We will now describe this (non-functorial)
construction in any W-topos and discuss its behaviour with respect to a given
finiteness condition.

Definition 16. Let L be a language on an alphabet X' in a W-topos €. We say
a monoid morphism ¢ : X* — M recognises L if there exist x : M — {2 making
the following triangle commute:

o X0
@/
M

A monoid M recognises L if there exists such a @ with target M.

We call the triple (M, p,x) an L-monoid, and an L-monoid morphism from
(M, p,x) to (M',¢',X') is a monoid morphism f : M — M’ such that those two
triangles commute:

M—t

/\“"d\/

M—>M’

in other words: f is a morphism from ¢ to ¢’ in X*/Mon(E) and from x to X’
in £/ as well.

This defines a category Mon(L), and we denote by X Mon(L) the full subcate-
gory of X-generated L-monoids spanned by L-monoids of the form (M, v, X (1))
where ¢ is epic in &, and for those we usually drop the now implicit X, (r)-

Remark 4. If x classifies p: P — M and x’ classifies q : Q < M’, then we have
X' = x iff p= f*(q) where f* is the inverse image of (i.e. pullback along) f.

Lemma 2. If ¢ : X* — M recognises L, then (Im @, e : X* —» Im @, x4, (1)) is a
X-generated L-monoid, where e is the image of ¢ and X () is the characteristic

morphism of the image inclusion of the composite L — X* Z» Im ¢ in Im ¢.



Proof. By pasting law of pullbacks, because the outer rectangle is a pullback
(px = xr so by Remark [4] L = ¢*(P)) and the right one two,

J‘"

P 1

N

M ——

then the left one is also a pullback and by (epi, mono) factorisation of ¢ and
pulling back along the inclusion of P we have a unique filler (by functoriality of
factorisation systems)

L ——» p(L)—— P

LB

2 Imyp M

which is also a monomorphism as a pullback of a monomorphism. Then this
diagram provides the (epi, mono) factorisation of L — X* % M, and because
all the squares here are pullbacks we have

(L) — 1

J I
O

Im Y Yo (%

showing the commutativity of the triangle (t) by universal property of (2.
Consider an L-monoid morphism f : (M, ¢, x) — (N, %, x") with ¢ and ¥
epimorphic in £. We have to show that fxyr) = X,(r). For this consider the

following diagram
[ —
% L o

L

|
>

|

L
| o[ o
o M

1
3 |7

¥ f Xy (L)

where the vertical composite morphisms L — M and L — N are the (epi, mono)
factorisations of, respectively, ip and i (where i : L < X* is the inclusion of L
in X*), and (L) — (L) is the unique filler. Showing fxy (L) = Xp(z) amount
to showing the square (2+43) is a pullback (by Remark . But we already know
that (3) is a pullback so we have to show, by pullback pasting, that (2) is a
pullback, and to do so we use Carboni, Janelidze, Kelly and Paré [5, Lemma



4.6]. As a topos &, is regular, ¢ is an epimorphism (by hypothesis) and (1) is a
pullback (¢x,(z) = xr then L is the pullback of ¢(L) along ¢, cf. Remark ;
thus (2) is a pullback iff (1+2) is. But ¢f = 1 therefore (cf Remark [4| again)
(142) is indeed a pullback, translating 1 x., (L) = Xr-

Of course, X* always recognises any language L. This can be seen as the conse-
quence of the fact that the initial automaton always exists.

Definition 17. Let A : Ix — Set be an automaton on an alphabet X in a W-
topos €. The morphism Ay o + X* — A(st)ACY s a monoid morphism with

image factorisation X* ~2» T(A) < A(st)A6Y . The monoid T(A) is called the
transition monoid of A.

Proposition 11. If A recognises L, then (T'(A),Ta) is a X-generated L-monoid.

Proof. We apply Lemma [2] to the following triangle

*
Asty E ﬁc’“t:xll
?

A(st)AG)
Al (A guy) ) 5 Ain st

which commutes because of £-functoriality of A and the fact that ey is the
identity of st in the E-category Zx.

Remark 5. However, the T' construction is not functorial; to witness this in Set,
consider any finite automaton 4 with at least two distinct states ¢ and r on an
alphabet with at least two letters a and b, and construct an automaton B by
adding a new state ¢ to A, and such that B(a)(t) = q, B(b)(t) = r, B(c)(t) =t
if ce X'\ {a,b} and B(c)(s) = A(c)(s) if ¢ € X, s € A(st). The initial state and
final states of B are those of A so that the inclusion of states of A in those of
B defines a monomorphic automaton morphism from A to B, and the transition
monoid of B contains strictly more endofunctions than those of A. However, an
L-monoid morphism between 74 and 75 has to be surjective because 74 and 75
are, which is impossible in that case.

The transition monoid construction might not be functorial but it at least pre-
serves divisibility.

Proposition 12. The T construction induces two functors : a covariant one

from the wide subcategory Autocp:(L) of Auto(L) of automata and pointwise
epic automaton morphisms to X Mon(L), and a contravariant one T from the
wide subcategory Automeno(L) of Auto(L) of automnata and pointwise monic
automaton morphisms to X Mon(L).

Proof. Consider a pointwise epimorphic automaton morphism e : 4 —» B. By &-
naturality of e, epimorphy of e entailing monomorphy of B(st) and (epi, mono)
factorisation we have a unique filler



2 s T(A) A(st)AGH

H lHIT(e) leﬂsw

S — T(B) — B(st)B6H (IW B(st)A)

making the diagram commute, and it also is an epimorphism. By functoriality of
orthogonal factorisation systems, this construction is functorial where it makes
sense, namely on Autoepi(L). A similar argument of functorial factorisation al-

lows constructing the functor ? and uses the fact that monomorphy of m implies
monomorphy of mAGY,

Corollary 2. If A divides B, e we have A«iggﬁ, then
T(A) EQ T(C) T(m) T(B), so in particular, T(A) divides T'(B).

An automaton recognising L can be seen as a presentation of an L-monoid. But
in fact, each X-generated L-monoid can be seen canonically as the transition
monoid of an automaton.

Lemma 3. The covariant functor T . Auto.p;(L) — X Mon(L) has a section
(up to natural isomorphism) A defined by

AL )(st) = M, AM, p), =p, AM, @) =35 M= MY,

— T Zin,s

%) m™ X]X(L)
A(M, p) =X 5 My MM 22 oM

st,out
and sends an L-monoid morphism [ : (M, p) — (N,) to an automaton mor-
phism (idq, f,idg) : A(M, p) — A(N, ).

Proof. Denote by (M,m,e) the monoid M, A(M,p) = (A(M, ).

— " T Zin,out — T Zin,st

exA(M, ) yevM by E-functoriality, but exA(M, p) = exoem XM =

————“st,out ——— Zst,out
em™x 1 because ¢ is a monoid morphism and em™ = id§, by left unitality in
the monoid M. Therefore, A(M, ) = (pxxi)evM : Z* x 1 — 2 corre-

—— " " Zin,out
sponds to @x, (1) @ X — §2, itself equal to xz because (M, p) is a X-generated
L-monoid. We have to show that M is isomorphic to a submonoid of M™ in a

natural way; it is sort of an internal Cayley theorem. Recall that by definition
TAM, )

X ——=» T(A(M,¢)) — MM is the (regular epi, mono)-factorisation of the

. . _ 4| . . . . . . .
monoid morphism A(M, p) = om™ which is also a factorisation : ¢ is epic

5t,st
by hypothesis and m™ is monic because it has a retract M¢ by left unitality.

Theorem 2. Let L be a language over an alphabet X in a W-topos £. The tran-
sition monoid of the minimal automaton T (Min(L)) is minimal in the category
of L-monoids. We then call this monoid the syntactic monoid of L and denote
it by Syn(L).

Proof. Let (M, ¢, x) be any L-monoid, and by Lemma [2| (Im ¢, e) its reflected
XY-generated sub-L-monoid.



Min(L) B A(Im g, e) in Auto(L)

7 Iz _
Syn(L) T(B) (Im ¢, e) — (M, ¢,x) in Mon(L)

In Set, the syntactic monoid provides another characterisation of regularity: a
language is regular if and only if its syntactic monoid is finite. We discuss this
fact with different finiteness conditions. In the following results we might use the
fact that Min(L) is a reachable automaton.

Definition 18. An L-automaton A is reachable if O(L) 4 A is an epimor-
phism.

According to Proposition |5} A is then reachable iff A;,  is an epimorphism.

Lemma 4. If A is reachable, the states object of A is (canonically) a quotient
of its transition monoid.

Proof. Consider the diagram
A

3 “=in,st A(bt)
TAl x TA(St)EEAiI).st
T(A) A(st)AGH

where the top-right triangle commute by £-functoriality of A and the bottom-left
one does by definition of 74. Then, the whole diagram commutes and therefore
by left-cancellation of epimorphisms, the composite arrow T(A) — A(st)AGH) —
A(st) is an epimorphism.

Theorem 3. Let L be a language in a W-topos &.

1. If Syn(L) is K-finite then L is K-regular.
2. If € is Boolean and L is K-regular then Syn(L) is K-finite.

Proof. 1. By Lemma |4} Min(L)(st) is a quotient of Syn(L); the former is K-
finite when the latter is according to Johnstone [7, Lemma 5.4.4.ii].

2. As & is Boolean, Min(L) is K-finite because is K-regular by Theorem and
also by Booleanity, exponentials and subobjects of K-finite objects are K-
finite according to Acuna-Ortega and Linton [1, Main Theorem]|, therefore
Min(L)Min(5) i finite and so is its subobject Syn(L).

4 Equivariant automata

Automata in toposes B G for a discrete group G were explored by Bojanczyk,
Klin and Lasota |4} Section 3] with decomposition-finiteness. Here we also discuss
dK-finiteness in this setting.



Definition 19. An equivariant automaton is an automaton in a topos BG for
G a discrete group.

Proposition 13. Let G be a discrete group. An object A of BG is

1. dK-finite iff it is finite as a set, and
2. decomposition-finite iff it has a finite number of orbits.

Proof. 1. See Johnstone [7, Example 5.4.19].
2. Connected G-sets are exactly the transitive ones, therefore orbits.

Example 2. As a first “toy” example we consider an automaton in the topos of
sets with an involution, namely Z /7 Set, the topos of the actions of the two-
element group. For each set with an involution (X,%) we shall denote i(z) = Z.
Consider the two-letter alphabet X' = {a,a} where the involution exchanges the
two letters. The free (internal) monoid is simply the free monoid X* where the
involution swaps the two letters. We define the language L = {lul|l € A,u € A*}
of words of length at least two whose first and last letters are different. The
Nerode quotient E}‘EL is the five elements set

{L,a”'L,a 'L, (a@)" 'L, (aa) 'L}

so that its only fixed point is L € Z}‘EL. This allows us to describe the minimal
Z /2 Z Set-automaton of this Z /2 Z Set-language:

5 Nominal Automata

We define the Myhill-Schanuel topos B Aut(N) of nominal sets and equivariant
functions to be the category of continuous actions on discrete spaces of the
topological group Aut(N) of permutations of a countable set N of names, where
the topology is induced by the inclusion Aut(N) C NN (where NV carries the
product topology); equivariant functions are those functions that commute with
the action. According to Mac Lane and Moerdijk |12, Theorem 3.9.2], this indeed
form an atomic W-topos.



Definition 20. A nominal automaton is an automaton in the topos B Aut(N).
In the topos B Aut(N), point 2 of Theorem [I| becomes:

Theorem 4 (Cf. Bojarnczyk, Klin and Lasota [4, Theorem 5.2]). Let L
be a language over X in the topos B Aut(N). The language L is decomposition-
regular iff X7_ is orbit-finite.

Ezxample 3. Consider on the alphabet N the classical example of the language L
of words where the first letter appears at least once again further in the word:

L ={abiby- b, e N*In e Nja,b; e NJFi e N1 <i <n,b; =a}

which is a nominal set. Indeed, it is stable under permutations of letters, and
each word is finitely supported by the finite set of letters that appears in it.
Let us compute the minimal automaton for this language. Recall that for any
nominal set A, 24 = {P C A|P is finitely supported}. The states object is NjEL
and here it is therefore the nominal set

{u'L cN*

u e N} = {L} U {N*aN*|a € N} U {N*}

so that by Theorem |1} L is decomposition-regular.

To finally describe the minimal automaton, recall that the initial state, a fixed
point, is simply the equivalence class L of €, and an equivalence class is a final
state if and only if it contains a language that contains the empty string, e.
The only such class is N*, therefore it is the only final state of the automaton.
Then, the action — - a of a letter a € N is given by K -a = a~'K. The following
diagram sums up the construction, and the register automaton counterpart of
this nominal automaton can be found in Francez and Kaminski (8 Figure 7]:

#+a

where the diamond state is the initial state and the double circle is a final state
(in fact the only one in this case). Observe that states in the same column are
in the same orbit. The orbit {a_1L|a € N} can be thought of as a single state
such that a transition from the initial state to this state-orbit writes the read



letter (which is the first letter of the word) in a register. Reading the rest of the
word, we loop on this state-orbit until we read a letter that is other than the
one in the register. In that case we reach the final state on which we loop until
the word is finished reading.

Let us compute the syntactic monoid of L. It is the set of functions
{u'Llu e N*} - {u"'L|u € N*} of the form f, : u=*L — (uv)~'L for some
fixed v and with action f, - ¢ = f,., because v — f, is a nominal monoid
morphism N* — Syn(L) so in particular an equivariant function. Then

Syn(L) = {f-} U{fala € N} U {faru|a € N,b € N\ {a} ,u € N\ {a}"}
U {fauav|a S N,’LL7’U S N*}

and each member of this union is an orbit, so that Syn(L) is decomposition-finite.
In nominal automata theory, dK-finiteness is not an interesting notion:

Proposition 14. The dK-finite objects in B Aut(N) are exactly finite sets with
the trivial action.

Proof. The topos B Aut(N) is a subtopos of [Aut(N) °P, Set], so dK-finite objects
of B Aut(N) have to be dK-finite objects of [Aut(N)°P,Set] (cf. Johnstone |7,
Corollary 5.4.12]), which entails they have a finite underlying set according to
Proposition Because B Aut(N) is atomic, we restrict to connected objects, i.e.
non-empty transitive nominal sets, and show that the only transitive nominal
set with finite underlying set is 1. According to Bojanczyk [3, Theorem 6.3],
transitive nominal sets are of the form NI /c where F'is a finite set, NI is the
set of injections from F to N, and G a subgroup of G . But then the only case

for which N[/QF is a finite set is when F' 2 (), and in that case NIl = 1.

6 Conclusion and Future Perspectives

Because the subobject classifier in Set played a crucial role in the Colcombet
and Petrigan functorial viewpoint of automata, we adapted it to a wide class of
toposes, recovering minimisation results, and adding Myhill-Nerode type theo-
rems to it, as well as some discussions about the syntactic monoid of a language,
everything internally to a given topos. The results still make sense for sets, and
can be applied to the Myhill-Schanuel topos of nominal sets.

We would like to make more use of the enriched Colcombet and Petrigan
functorial point of view of automata. For example, because everything is done
using enriched category theory, a generalisation to non-cartesian monoidal closed
categories is immediate, and should at least encompass the categories of Adamek,
Milius and Urbat [2].

Acknowledgments. The author would like to thank Clemens Berger for the discus-
sions and the help for the redaction of this article.
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Appendix

Initial and terminal automata as enriched Kan extensions

Proof (Part of the missing proof of.). Let us compute the terminal automaton.
Its states object is defined as the end

/ Tss(st, 0) h L(o)
0€0x

so by the end formula for right Kan extension, it is obtained by equalizing
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[oe(0s, L(0)764) ? Io,0e(05)3 L)

I s (st,0)xZx(0,0")

for the ¢ and v of the lemma, which amounts to the equalizing of

id s
_
id, 5
because in each product, each other factor is 1 because either the exponent is 0,
either L(o) = 1. Finally ¢ and ¢ happens to be both the identity morphism.

Minimal automaton

Proof (Missing proof of @) We first show we have (E.s, M #)-factorizations.
Consider two V-functors F' and G from .# to V and « a V-natural transformation
from F to G which means that we have a collection («; : F(i) — G(7)); of arrows
of V such that the diagram

L. F; ; . .
S(i,j) —————— V(G(i),G()))
Giyj V(OéivG(j))

VEQ), F() —mamay YEWD,GG))

commutes for all couples (i,j) of objects of .#. Consider for any object i of
7 the (E, M)-factorization F(i) =% J(i) X% G(i) of a;. In order to make the
assignment ¢ — J(¢) a V-functor, we use the fact that the factorization system
(E, M) is enriched by returning to the pullbacks definition; for all couples (%, )
of objects of .# we have a solid diagram

(i, §) —— V(G(i), G())

. i V(ui,G ()
. A V(I (i) 115) ) .
V(F(i), F(j)) V(J(i), J(j) ————= V(J(i),G()))
V(ei,J(5)) V(ei,G(5))

V(F(i),e5)

V(F(), J(j)) V(F(i),G(j))

where the outer hexagon commute because in may be identified with the com-
muting square above (o; = e;1; and o = €;;). Since the factorization sys-
tem on V is enriched, the front square of the diagram is a pullback so that we
get a unique dotted arrow J; ;, defining an action of the arrows of .#. The V-
functoriality of J is due to the V-functoriality of F' and G and the uniqueness of

V(F(@),15)



the action maps J; ;. We can recognize on this same diagram the V-naturality
squares for u (the top face of the cube) and e (the left face), finally ensuring
each arrow in [.#, V] admits an (F_», M. s )-factorization.

Now, (E.y, M #) is indeed a factorization system. The factorization is unique
because it is unique pointwise, and a V-natural transformation is an isomorphism
if and only if it is an isomorphism pointwise, so that E s and M s are closed
under isomorphisms, and they are closed under composition too because so are
FE and M, and because composition of V-natural transformations is also done
pointwise.

Finally, we will make use of Proposition (7| to prove (F.», M s) is enriched.
Consider a V-natural transformation ¢ : F = G in [#,V] such that for each

object ¢, €; is in E (i.e. such that € is in E ). According to Proposition |z|,
because (E, M) is enriched, and because v ® ¢; : v ® F(i) — v ® G(i) is the
copower of €; by v any object of V, then v ® ¢; is in E. It remains to show that
v®e = (v® eg;); is the copowering of ¢ by v, so that by definition, v ® ¢ is
in F 4, showing F » is stable under copowers and thus by the Proposition, that
(Es, M) is enriched.

The V-category [.#,V] where, recall, the object of arrows between F and
G is the end [, ,V(F(i),G(i)), has all copowers that are given by tensoring
the V-functors pointwise. It is clear that tensoring pointwise gives a V-functor
because it boils down to postcomposing a V-functor F' by the V-functor v ® —
with action on arrows between x and y the transpose of:

associator v®(counit at y)

wz)@V(x,y) — v (@ V(2,y) ———— > v QY.
This indeed defines a copowering in [#, V]:
IV FG) = [ Ve F().6)
s
= / v ® V(F(i),G(i)) by copowering in V

2 ® / V(F(i),G(i)) because continuous functors preserve ends

=v® [£,V](F,G).
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