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Introduction We present a recent line of work on open games and open struc-
tures [1,2,3], which describe compositional frameworks for parity games and
Markov decision processes. This is done by adding open ends that form inter-
faces along which two structures can be composed. By finding adequate syntactic
and semantic categories, we can then write algorithms that can leverage compo-
sitionality to compute faster solutions when there are repeated sub-structures.

Here, we show the categorical machinery at work in the definition of open
parity games (OPGs) and related categories, as well as some particularities that
arise in the case of open Markov decision processes (OMDPs). Our goal is to give
all the necessary tools to understand the right-hand triangle in Figure 1 and why
they are relevant. We also show that it is possible to derive efficient algorithms
from category theory. Some details have been simplified for readability, for a full
account see [1,2,3].
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Fig. 1. The unidirectional and bidirectional frameworks (respectively left and right).

A Traced Symmetric Monoidal Category of OPGs We define a category
OPGr of (rightward) OPGs whose objects are integers representing a number of
open ends (which all point towards the right), and a morphism n → m is an OPG
with n open ends on the left andm on the right. The identities, composition, unit,
swaps, and tensor product are straightforward. Tracing is done by “rewiring” a
number of open ends from the right interface into those of the left interface. This
data can be shown to form a TSMC.

Graphical Language as a free TSMC However, manipulating OPGs can be
cumbersome, especially because they need to be quotiented to form a category.
Moreover, it is difficult to define algorithms that work by decomposing OPGs
into sub-games. We therefore define a syntax for these games that is easier to
handle. It is based on a signature Σint that contains a generator for each type
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of node (i.e., tuple of player, parity, and left and right interfaces). It gives rise
to the free TSMC Ftr(Σ

int), and a realisation functor Rr : Ftr(Σ
int) → OPGr

by mapping each generator to the corresponding one-node OPG. Fullness of Rr

can easily be shown, which shows that Ftr(Σ
int) can represent all OPGs.

Semantic Category as a Kleisli category Since they are open, OPGs have
positions that are neither winning nor losing because infinite plays may leave
the OPG. To represent the semantics of OPGs, we use FinScottLop

! . Gloss-
ing over details, it is a TSMC whose represents choices by player and oppo-
nent of a path in the game from an entry to an exit, remembering the high-
est priority seen on the path. We can then define the interpretation functor
J−Kr

: Ftr(Σ
int) → FinScottLop

! by freeness and the winning-position functor
Wr : OPGr → FinScottLop

! based on strategies in OPGs.

Bidirectionality and Int-construction We have built a triangle of TSMCs
and TSMC functors as on the left of Figure 1. Using the Int-construction, we
automatically get a triangle of compact closed categories and functors as on the
right of Figure 1. This framework is simpler to use in practice, since open ends
now have two directions (left and right), and loops can thus be created without
having to explicitly use tracing. One nice point of our approach is that we get
the full benefits of this more complex framework without having to go through
complex definitions, simply by using the Int-construction.

Category Theory for Algorithms In [2], we have defined an algorithm to
find the optimal expected reward in MDPs by induction on the syntax. The
idea is to find all potentially-optimal schedulers in sub-MDPs, then compose
them to find the optimal scheduler in the global MDP. This is done as above,
by defining adequate syntactic and semantic categories, then using freeness of
the syntactic category. This algorithm is faster than state of the art in case
of repeated sub-MDPs, and its advantage grows stronger with the degree of
repetition of sub-MDPs. In [3], we use the notion of Pareto curves to find a
sound and efficient approximation of all schedulers for sub-MDPs.
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