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A variety of system types related to computer science are naturally modelled coalgebraically, where final coalgebras
provide a description of branching-time semantics. Some work has focussed on linear-time behaviour where states are
assigned a collection of traces through the system. Here monads are a core component used to flatten multiple steps
into one. Monads in general fail to compose, so traces for two-player system-versus-environment games have so far
escaped attention. An example are coalgebras for the double covariant powerset functor PP : Set → Set; with there
being no way to equip PP with monad structure [8]. In this work we have two monads S and T modelling the system
and environment respectively; we think of the system as picking moves and the environment as nondeterministically
branching. We use weak distributive laws [3, 4, 1] to reverse environment-then-system branching by picking a one-
step strategy for the system, resulting in a composite monad ST : Set → Set. We isolate conditions when the Kleisli
[5] approach and the EM approach [7] can be applied for defining finite traces for reactive and generative systems
respectively.

Returning to double powerset, the neighbourhood monad (N , µN , ηN ) : Set → Set does exist (when the powersets

are contravariant), however the monad multiplication appears too cut-throat: for example {{{{x1}}}, {{{x2}}}}
µN

7→
∅. According to our intuition, the system can “pick” either {{{x1}}} or {{{x2}}} with the remaining choices being
fixed, determining the result {{x1}, {x2}}. One fix is to restrict to the monotone neighbourhood functor, where sets
of sets are forced to be upwards closed, and the approach using weak laws is closely related. The multiset monad M
is used to model system choices with the full law MP → PM , which maps JU1, . . . , UnK 7→ {Jx1, . . . , xn | xi ∈ UiK}.
We think of ending up nondeterministically in U1, . . . , Un, and the system picking a “one-step strategy” xi from each
Ui, forcing a play into states x1, . . . , xn. This intuition slightly loosens when looking at non-full laws, for example

λPP : PP → PP is defined on an element X ∈ PP (X), with λ(X ) = {V ⊆
⋃
X | ∀U ∈ X : U ∩ V ̸= ∅}. This

corresponds to introducing some nondeterminism into one-step system strategies. Consider {{x1}, {x2, x3}}
λPP

7→
{{x1, x2}, {x1, x3}, {x1, x2, x3}}, in the final option {x1, x2, x3} the system has essentially chosen x2 and x3 in
combination. Below we collect examples of (weak) distributive laws from [1, 4, 3], MS is the semiring monad for
some semiring S, and D is the finite distribution monad. These laws all have the flavour just discussed, with
DP → PD including convex combinations of system choices, essentially corresponding to randomised strategies.

Full Laws Weak Monotone Laws
MP → PM MSP → PMS for a positive semifield S
MM → MM MSPf → PfMS for a positive semifield S

PP → PP
DP → PD

Generative Systems These are systems which generate output. In our setting, we have coalgebras of the shape
X → STH(X). A standard approach to giving finitary trace semantics is coinduction in the Kleisli category of the
monad [5]: requiring that H distributes over ST . Importantly, none of the above laws result in composite monads
which are commutative (they are not laws of commutative monads in the sense of [6]); however their component
monads are, yielding canonical distributive laws α : HS → SH and β : HT → TH. We can build a lawHST → STH
compositionally from α and β, when H belongs the class of functorsGBF (for generative behaviour functors), defined
below.

H := id | A× id |
∐

H | H ◦H

The weak laws we have are laws of strong monads (from [6]), meaning the equation λ ◦ S(strT ) ◦ strS = T (strS) ◦
strT ◦ id× λ holds, where str are the monads strength maps.
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Proposition 1 Given a weak distributive law of strong monads λ : TS → ST where S and T are commutative, and
a functor H from GBF, the following Yang-Baxter equation holds between the canonical laws α, β and the (weak)
law λ.

HTS THS TSH

HST THS STH

βS

Hλ

Tα

λH
βS Tα

The Yang-Baxter equation holding gives us a way to define a full distributive law H(ST ) → (ST )H when λ is full,
and has been adapted to the weak setting in Theorem 4.5 from [2]. It is then left to check the following conjecture,
which is partly handled for the composite monad MSP → PMS in [1].

Conjecture 1 For any of our (weak) laws, the Kleisli category SetST is ω-cppo-enriched and when an H from GBF
is lifted to HST : SetST → SetST on the Kleisli category, it is locally monotone.

We illustrate what the trace semantics will give us with HX := 1 + A ×X with PP . The initial algebra A∗ is
lifted to the final coalgebra in SetPP and we get a map, given a coalgebra X

c−→ PP (1 + A × X), assigning each
state to its trace semantics tr : X → PP (A∗). Each element U ∈ tr(x) is a set of traces which the system can force.
There are certain elements in tr(x) which correspond exactly to a single system strategy, however other elements
correspond to several strategies (or a single strategy where the system can make multiple choices).

Reactive Systems For reactive systems of the type X → GST (X), results from [7] can be applied. There is a
distributive law TG → GT for any strong monad T (which Set monads automatically are), and any functor belonging
to

G := id | B | G×G | GA | G ◦G
where B has a T -algebra structure b : T (B) → B. A determinisation procedure then lifts c : X → GST (X) into
ĉ : STX → G(STX) where G’s final coalgebra can be used to obtain trace semantics. For example, we can treat

alternating automata as 2×PP (X)A-coalgebras, and obtain a map X
η−→ PP (X)

behĉ−−−→ 2A
∗
, which gives the language

where the system has a strategy to force an accept state. Note that states X ∈ PP (X) of ĉ are sets of states which

the system can force, and accordingly the PP (2)
b−→ 2 structure is b(X ) = 1 ⇐⇒ {1} ∈ X , meaning we only accept

when the system can force a set that consists of one or more accept states.

Future Work As future work we would like to link traces and strategies more closely. For example, in generative
systems with the PP monad if U ∈ trc(x), can we extract a strategy which would guarantee those given traces?
Conversely, we could ask is there such a U for every possible strategy? Once we have a suitable notion of strategy,
can we define classes of strategies such as finite memory or memoryless, and then link these with different classes of
properties (such as ω-regular)?

Another avenue of research we are keen to explore is give an account of infinite traces. These traces have important
applications in model checking, where properties like “something bad will never happen” are used.
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