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Abstract. We introduce a path-based coalgebraic temporal logic, Coal-
gebraic CTL (CCTL), as a categorical abstraction of standard Compu-
tation Tree Logic (CTL). Our logic can be used to formalize properties
of systems modeled as coalgebras with branching. We present the syntax
and path-based semantics of CCTL, and show how to encode this logic
into a coalgebraic fixpoint logic with a step-wise semantics. Our main
result shows that this encoding is semantics-preserving. We also present
a polynomial-time model-checking algorithm for CCTL, inspired by the
standard model-checking algorithm for CTL but described in categori-
cal terms. A key contribution of our paper is to identify the categorical
essence of the standard encoding of CTL into the modal mu-calculus.
This categorical perspective also explains the absence of a similar encod-
ing of PCTL (Probabilistic CTL) into the probabilistic mu-calculus.

1 Introduction

1.1 Path-based Temporal Logics and Categorical Generalization

Temporal logics provide specification-description languages in formal verification
on transition systems. Among such logics, CTL* and its fragment CTL [12, 13]
are well-known because of their descriptive power. They are path-based temporal
logics: they refer not just to immediate successors of the current state but also to
states reachable along (infinite) computation paths. Such path-based formulas
can express eventual and permanent behaviors of transition systems, such as
liveness and safety properties [1, 8].

CTL, even though it is a simple fragment, inherits much of the expressive
power from CTL*. CTL can express liveness and safety, and its formulas are
known to characterize bisimilarity equivalence on transition systems [28].

The restriction to CTL gives us computational efficiency in model checking,
an advantage over CTL*. It is well-known that, by implementing a naive fixpoint
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Table 1: Fixpoint characterization in classical CTL on a Kripke frame c : X →
P+X and in our generalization CCTL on a TF -coalgebra c : X → TFX.

path-based semantics step-wise semantics

classical CTL ↪→ CTL*
[14]−−→ 2X CTL

[13]−−→ Lµ
[26]−−→ 2X

coalgebraic (ours) CCTL ↪→ SFml
J KSFml−−−−−→ 2X CCTL

ι−1

−−→ µCCTL
J K

µCCTL−−−−−−→ 2X

algorithm, verifying a CTL formula on a state takes at most polynomial time [8],
in contrast to the known exponential time complexity bound for CTL*.

The technical core behind this efficiency of CTL is an encoding into a fix-
point modal logic, namely the mu-calculus Lµ [26]. This encoding can then be
used to induce another, step-wise, semantics of CTL formulas (Table 1, top-
right), in contrast to the path-based semantics (Table 1, top-left). The so-called
fixpoint characterization [13, Lemma 2.6] states that the encoding is semantics-
preserving. The fixpoint characterization enables the verification of path-based
specifications expressed in CTL by step-wise, iterative calculation on system
states and substantially reduces the complexity of the verification.

The fixpoint characterization seems to define what CTL is, as an optimal
solution for the trade-off between descriptive power (inherent to the path-based
logics) and efficiency in verification (implemented by step-wise iterations).

Nevertheless, the fixpoint characterization does not come for free among
known variants of CTL, instantiated over various systems with different branch-
ing types. In quantitative variants of CTL [4, 30], the fixpoint characterization
results hold under some restrictions on its parameters. In contrast, the well-
known probabilistic variant of CTL, called PCTL [1, 18], does not have a known
encoding into a natural probabilistic fixpoint logic, like the probabilistic mu-
calculus [7].

We aim to establish a generic notion of CTL by which we can uniformly
classify known variants of CTL and clarify why the original CTL (with some
variants) validates the fixpoint characterization and PCTL does not seem to.
To this end, we appeal to coalgebraic logics [29, 32], a meta-theory of logics on
generic systems modeled as coalgebras.

As a coalgebraic generalization of CTL*, the coalgebraic path-based logic
µL is proposed in [5]. The original non-deterministic transition systems, which
provide the semantic domain for CTL*, are generalized to TF -coalgebras with
their branching type and transition type specified by a monad T and a functor
F , respectively. The notion of computation path in CTL* is replaced by its
categorical abstraction, maximal execution map. As shown in [5], this framework
encompasses both classical CTL* and an extension of PCTL, by instantiating
the branching type by the non-empty powerset monad P+ and the Giry monad
G1.
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1.2 Contributions: Coalgebraic CTL

We follow [5] and introduce our coalgebraic generalization of CTL, dubbed CCTL.
As a fragment of µL, our CCTL has the genericity of branching and transition
type T, F , and sets of liftings Σ,Λ of these type functors. Furthermore, CCTL
has novel syntactic parameters of µ-schemes and ν-schemes, which restrict the
allowed form of the least and greatest fixpoints. We describe the path-based
semantics J KSFml of CCTL inherited from µL (Table 1, bottom left) on a cate-
gorical semantic domain, which we call BT situation.

Our theoretical highlight is a coalgebraic version of the fixpoint characteri-
zation (Thm. 4.6). We present a bijective and semantics-preserving encoding of
CCTL into a restriction µCCTL of the coalgebraic mu-calculus [7, 19, 38], yielding
the step-wise semantics of CCTL (Table 1, bottom right).

Sufficient semantic conditions (Assum. 4.7) for the fixpoint characterization
are identified in purely categorical terms. They classify the non-deterministic and
probabilistic situations: while classical CTL enjoys all of them, PCTL violates
some. The violation explains the absence of the fixpoint characterization for
PCTL, in categorical terms.

As significant by-products of our fixpoint characterization, we discovered a
coalgebraic abstraction of the expansion law [1], which tells how to expand path-
based formulas step by step concretely (Prop. 4.9). The coalgebraic expansion
law is obtained under weaker assumptions than the fixpoint characterization,
and induces a partial fixpoint characterization (Prop. 4.10). Remarkably, these
results also apply to a qualitative fragment of PCTL.

Our fixpoint characterization (Thm. 4.6) leads to a polynomial-time model-
checking algorithm MCCCTL

S of CCTL, which is parametrized by a BT situation S.
With an additional finiteness condition on S, we obtain termination and correct-
ness of the coalgebraic algorithm MCCCTL

S . We further conclude the polynomial-
time complexity bound of MCCCTL

S , which recovers the quadratic bound of the
known CTL model checking with fixpoints [8] when precisely instantiated.

This paper is the first step towards a uniform investigation into efficient
and expressive coalgebraic path-based logics. It paves the way to classify known
examples, like the quantitative CTL [4, 30], and unknown ones, like a “monotone
neighborhood” version of CTL induced from neighborhood frames [16].

The paper is organized as follows. §2 recalls necessary categorical notions.
§3 defines our semantic domain dubbed BT situation and introduces CCTL as a
fragment of µL [5]. §4 defines a fragment µCCTL of the coalgebraic mu-calculus,
and provides an encoding of CCTL formulas into µCCTL formulas. Our main
theoretical result, the fixpoint characterization (Thm. 4.6), shows this encoding is
semantic-preserving. §5 formulates a polynomial-time model-checking algorithm
for CCTL.
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2 Preliminaries

We use C for a category with finite products and countable coproducts. As
examples, we will use the category Set of sets and functions and the category
SB of standard Borel spaces and measurable functions [11, 34].

Let T be a monad, and F be an endofunctor, on C. We formulate a targeted
system as a TF -coalgebra, i.e., a map c : X → TFX.

2.1 Functors and Monads

We recall some basic properties of functors and monads. See [24] for details.
A functor on the category C is a (simple) polynomial functor [24, Def. 2.2.1]

if it is constructed by the following BNF: F ::= Id | C |
∐
b∈B Fb | F1 × F2

where C is an arbitrary object and B is a countable set. A major example is an
arity functor [24] F =

∐
α∈AX

|α| for some set A with an arity map | |.5 For
simplicity, we assume any polynomial functor hereafter is an arity functor.

A commutative monad [24, Def. 5.2.9] has a strength stX,Y : X × FY →
F (X×Y ), a swapped strength st′X,Y : TX×Y → T (X×Y ) defined by TX×Y ∼=
Y × TX stY,X−−−→ T (Y ×X) ∼= T (X × Y ), and the double strength dst = µX×Y ◦
T st′X,Y ◦ stTX,Y = µX×Y ◦ T stX,Y ◦ st′X,TY : T (TX × Y ) → T 2(X × Y ). More
generally, we can also define an n-ary strength map dstn : TA1 ×· · · × TAn →
T (A1 ×· · · ×An) likewise.6

Example 2.1 (commutative monads).

1. (non-determinism) The powerset monad P on Set is commutative and its
strength is given by (x, S) 7→ {(x, s) | s ∈ S}. Its double strength is given by
(T, S) 7→ T × S, where × is the set product.

2. (reliability) The sub-Giry monad G on SB is defined as follows. The ob-
ject part of G maps a standard Borel space (X,ΣX) to (MX , ΣMX

) where
MX is the set of sub-probability measures on X and ΣMX

is the Borel set
generated from {ρ ∈ MX | ρ(S) ⊂ [0, 1] is measurable w.r.t. ([0, 1], Σ[0,1])}.
The sub-Giry monad G maps a measurable map f : (X,ΣX) → (Y,ΣY ) to
Gf : (MX , ΣMX

)→ (MY , ΣMY
); (Gf)(ρ) = λS. ρ(f−1(S)).

Furthermore, G is indeed a commutative monad. The unit η : (X,ΣX) →
(MX , ΣMX

) of G maps each element x to the Dirac distribution δx, and the
multiplication µ : (MMX

, ΣMMX
) → (MX , ΣMX

) maps Φ ∈ MMX
to the

measure defined by the integration
∫
ρ∈MX

Φ(ρ) dρ. The strength of G is

X × GY 3 (x, ρ) 7−→ δx × ρ ∈ G(X × Y )

where δx × ρ is the product of measures [11] and the double strength is

GX × GY 3 (ρ1, ρ2) 7−→ ρ1 × ρ2 ∈ G(X × Y ).
5 In a category which has enough copowers [27], like Set and SB, any polynomial
functor can be represented as an arity functor, and vice versa.

6 Such an n-ary strength is defined uniquely by virtue of commutativity.
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A commutative monad is affine [21, Def. 4.1], if the unit η1 : 1 → T1 is
an isomorphism. Affine-ness is a categorical generalization of serial-ness or left-
totality [8].

Example 2.2. If the category C has pullbacks, every monad T has the largest
affine submonad T a, called the affine part of T [21, Def. 4.5], given by the
pullback of TX T !X−−→ T1

η1←− 1. The affine part of a commutative monad is also
commutative. The affine part of P is the non-empty powerset monad P+, and the
affine part of the sub-Giry monad G : SB→ SB is the Giry monad G1 [15], which
is defined by restricting sub-probability measures in G to probability measures.

2.2 Predicate Liftings

The concept of predicate lifting [32] was originally defined on 2-valued predi-
cates and used in interpreting modalities in coalgebraic modal logics. Here we
generalize it to any (complete lattice-like) object Ω in C.
Definition 2.3 (logical value object). An object Ω ∈ C is called a logical
value object if its representation Ω( ) : C → Setop restricts to the category of
complete lattices and {⊥,>,∨,∧}-preserving functions.

If Ω is a logical value object, any n-ary boolean operator b induces a monotone
natural transformation

(
Ω( )

)n ⇒ Ω( ). 7 By the Yoneda lemma, we then
obtain an n-ary map γb : Ωn → Ω corresponding to the operator b. Especially,
we have γ>, γ⊥ : 1→ Ω and γ∨, γ∧ : Ω2 → Ω.

With these maps induced from boolean operators, we can treat the object
Ω ∈ C as if it were a complete lattice. Hereafter, we will identify a boolean
operator b with the induced map γb and use the letter Γ for the set of all
boolean operators.

Definition 2.4 (predicate lifting). Let G : C → C be an endofunctor, and
Ω ∈ C be a logical value object.

1. A (predicate) lifting or modality of G w.r.t. Ω is a natural transformation
{λY : ΩY → ΩGY }Y ∈C which is monotone w.r.t. the lattice structures on
ΩY and ΩGY .

2. We write evλ : GΩ → Ω for the correspondent of a lifting λ via the Yoneda
lemma8: this is to say, evλ = λΩ(idΩ) and λY (p) = evλ ◦Gp for p ∈ ΩY .
Henceforth, we consistently use the letter σ for a predicate lifting of the

branching behavior T and λ for that of the transition behavior F . We call σ
“path quantifier” and λ “next-time operator.” 9

7 Here a boolean operator means a map on a complete lattice constructed from oper-
ators ⊥,>,∨ and ∧.

8 Recall the Yoneda lemma: there is a bijective correspondence between natural trans-
formations from Ω( ) to ΩG and elements of ΩGΩ .

9 Although we treat only unary next-time operators for simplicity, we can easily extend
our framework to contain 0-ary next-time operators. Such 0-ary modalities are used
to include atomic predicates to our syntax (see Def. 3.7) as in [19, 33]. We will freely
exploit this extension when we talk about concrete examples.
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Example 2.5 (predicate liftings). First, note that 2 ∈ Set and (2,P2) ∈
SB are logical value objects.

1. There is a trivial lifting idΩX : ΩX → ΩX of the identify functor Id. More
generally, there is a canonical predicate lifting Pred(F ) for each polynomial
functor F [24, Lemma 6.1.3]. For an arity functor F =

∐
α∈AX

|α|, the
lifting Pred(F ) is induced from the map [∧|α|]α∈A :

∐
α∈AΩ

|α| → Ω, where
[ ] denotes a cotuple of the coproduct and ∧|α| : Ω|α| → Ω denotes |α|-
ary conjunction. Thus, Pred(F )(Q) for a predicate Q ∈ ΩX is given by
Pred(F )(Q) = [∧|α| ◦Q|α|]α∈A.

2. (non-determinism) Liftings P+
♦ ,P

+
� of P+ are respectively induced by the

maps ♦,� : P2→ 2 (i.e., P+
♦ (P ) = ♦◦P+(P ) and P+

� (P ) = �◦P+(P ), recall
Def. 2.4). These maps ♦,� are defined as follows: for S ∈ P+2, ♦(S) = 1 if
and only if S = {0, 1}, {1} and �(S) = 1 if and only if S = {1}.

3. (reliability) The Giry monad G1 has liftings G1,≥q,G1,>q which are induced by
the “larger-than-q-or-equal” and “larger-than-q” maps ≥q, >q : G1(2,P2) ∼=
([0, 1], Σ[0,1])→ (2,P2). The map ≥q is defined by ≥q (r) = 1 if and only if
r ≥ q, and the map >q is also defined likewise.

3 Coalgebraic Path-based Temporal Logics: µL, CCTL

3.1 Coalgebraic Abstraction of Systems

We first set up a semantic domain of coalgebraic path-based logics µL and
CCTL, dubbed BT situation. It is categorical data that includes branching and
transition types T and F , a coalgebra of these types, path quantifiers, and next-
time operators.

Definition 3.1 (BT situation). A branching-transition situation (BT situa-
tion, in short) is given by a tuple (C, T, F, c,Ω,Σ,Λ) where:

1. C is a concrete, finitely complete, and countably cocomplete category,
2. T : C→ C is a commutative monad,
3. F : C→ C is a polynomial functor,
4. c : X → TFX is a TF -coalgebra,
5. Ω ∈ C is a logical value object (see Def. 2.3),
6. Σ is a set of predicate liftings of T , called path quantifiers,
7. Λ is a set of predicate liftings of F , called next-time operators.

Example 3.2 (BT situation). Table 2 defines our examples of BT situation.
Note that our instantiations SND and SR still have a genericity of F .

1. (non-determinism) In SND, Pred(F ) and P+
♦ ,P

+
� are the liftings as in Exam-

ple 2.5. A P+F -coalgebra is a (generalized) left-total Kripke frame. Besides
the classical Kripke frames when F = Id, F -genericity allows other variants:
labeled Kripke frames when F = P(AP)× Id (here AP is the set of atomic
propositions) and Kripke structures with termination when F = 1+ Id.
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Table 2: Examples of BT situation

parameters SND SR

category C Set SB

branching type a monad T P+ G1
transition type a polynomial F F F

system c : X → TFX a Kripke frame a Markov chain
truth values Ω ∈ C 2 (2,P2)

path quantifiers {σ}σ∈Σ {P+
♦ ,P

+
� } {G1,≥q,G1,>q}q∈[0,1]

next-time operators {λ}λ∈Λ {Pred(F )} {Pred(F )}

2. (reliability) In SR, G1 is the Giry monad, Pred(F ) and G1,≥q,G1,>q are as
in Example 2.5. A G1F -coalgebra is a (generalized) Markov chain, which
coincides with a classical one when the state space is given by the discrete
space (X,PX) for a countable set X and F is given by Id or P(AP)× Id.

3. (qualitative reliability) We also define a BT situation SqR for qualitative
reliability by restricting the set of path quantifiers of SR to {G1,≥1,G1,>0}.

3.2 Maximal Traces as Computation Paths

We recall concepts of maximal trace map and maximal execution map of TF -
coalgebras. The latter is an abstraction of the classical notion of computation
trees and will be used in the formulation of our path-based semantics.

We first recall Jacobs’ formulation of maximal trace ([22]) on the Kleisli
category of the monad T [24]. Let J : C → K`(T ) be the canonical left adjoint
of the monad T . This J sends an object of C to itself and a map f : A → B
to ηB ◦ f . Given a distributive law ξ : FT ⇒ TF , we have the induced functor
F : K`(T )→ K`(T ) that sends a Kleisli arrow f : A p→ B to ξB ◦Ff : FA p→ FB.

Definition 3.3 (maximal trace, [22, 37]). Suppose that each homset of the
Kleisli category K`(T ) carries an order v. A functor F and a monad T constitute
a maximal trace situation if

1. F has a final coalgebra ζ : Z → FZ,
2. a distributive law ξ of F over T exists,
3. for every F -coalgebra c : X p→ FX, there exists the greatest map u : X p→
Z satisfying Jζ � u = Fu � c w.r.t. the order v, where � is the Kleisli
composition.

The greatest map u in condition 3 is called the maximal trace map of c and is
denoted by tr(c).

Condition 1 and 2 are automatically satisfied in our semantic domain, BT
situation S, since every polynomial functor has its final coalgebra, and there
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is a canonical distributive law of polynimial F over commutative T (cf. [24,
Prop. 5.2.12]).

We will use the maximal trace map for the polynomial functor FX := X×F .
Note that the auxiliary coefficient X is added to capture the current state.

Let ζ = 〈ζ1, ζ2〉 : ZX → X ×F (ZX) be the final coalgebra of FX . We call the
object ZX the path space of X with type F , and the maps ζ1 and ζ2 the head
operator and the tail operator on the path space ZX .

We can render any TF -coalgebra c : X → TFX into a TFX -coalgebra c′ =
dstX,FX ◦〈ηX , c〉 : X → T (X×FX). We call the maximal trace w.r.t. this TFX -
coalgebra c′ the maximal execution map for the TF -coalgebra c : X → TFX.

Definition 3.4 (BT situation with maximal execution). A BT situation
with maximal execution is a BT situation S with the maximal execution map
tr(c′) for the TF -coalgebra c : X → TFX.

In the remainder of this paper, we fix a BT situation S = (C, T, F, c,Ω,Σ,Λ)
with maximal execution tr(c′).

Example 3.5 (examples of maximal executions). In the examples below,
for the sake of simplicity, we fix F to be Id on Set or SB.

1. (non-determinism) The final coalgebra of (IdSet)X = X × IdSet for Set is
the set Xω of streams, where ω is the set of finite ordinals. The existence of
maximal executions for P+ is assured by an adaptation of [37, Prop. 4.1].
Concretely, the maximal execution map tr(c′) : X → P+Xω maps x to {π ∈
Xω | π0 = x and ∀n ∈ ω.πn+1 ∈ c(πn)}.

2. (reliability) The final coalgebra of (IdSB)(X,ΣX) = (X,ΣX) × IdSB for SB
is the measurable set (Xω, ΣXω ) of streams. Its measurable structure ΣXω
is generated by the cylinder sets Cyl(t) = {π ∈ Xω | π has the prefix t} for
every finite path t. The existence of maximal execution for P+ is assured by
[37, Prop. 5.2]. Concretely, the maximal execution map tr(c′) : (X,ΣX) →
G1(Xω, ΣXω ) is given by

tr(c′)(x)
(
Cyl(t)

)
= c(x)(x1) · c(x1)(x2) · . . . · c(xn−1)(xn)

where t = xx1x2 . . . xn−1xn. For a detailed description, see [36, Def. E.9].

3.3 The logics µL and CCTL

We first recall the coalgebraic logic µL [5]. Its syntax is given by coalgebra-
generic path formulas and state formulas. The following definition is a slight
adaptation of the original µL.10

10 The notations µLF , µL, [λF ] and [λ] of the original µL [5] correspond to PFml, SFml,
♥ and ♠, respectively, in our presentation. We also omit variables in SFml.



Coalgebraic CTL 9

Definition 3.6 (state formulas and path formulas). Let Σ,Λ be sets,
and Γ be a ranked alphabet. Two sets PFmlΓ,Λ,Σ and SFmlΓ,Λ,Σ (or simply
PFml,SFml) are defined by the following mutual induction:

ϕ ∈ PFml ::=u | �γ(ϕ1, . . . , ϕ|γ|) | ♥λϕ | µu.ϕ | νu.ϕ | ψ
ψ ∈ SFml ::=�γ (ψ1, . . . , ψ|γ|) | ♠σϕ,

where u is a proposition variable, γ ∈ Γ , λ ∈ Λ and σ ∈ Σ. Furthermore, we
assume ϕ in ♠σϕ ∈ SFml is closed, i.e., ϕ has no proposition variables.

The symbols �γ , ♥λ and ♠σ correspond to boolean operators, next-time oper-
ators and path quantifiers, respectively.

We can then define the new logic CCTL as a fragment of SFml by restricting
the forms of fixpoint formulas.

Definition 3.7 (CCTL). Let Σ,Λ be sets and Γ be a ranked alphabet with
subsets Γµ, Γν ⊂ Γ . The set CCTLΓµ,Γν (whose subscripts we will sometimes
omit) is the subset of SFml defined by the following grammar:

ψ ∈ CCTLΓµ,Γν ::=�γ (ψ1, . . . , ψ|γ|) | ♠σ♥λψ
| ♠σ(µu.�γµ (ψ1, . . . , ψ|γµ|−1,♥λu))
| ♠σ(νu.�γν (ψ1, . . . , ψ|γν |−1,♥λu))

where u is a proposition variable, γ ∈ Γ , λ ∈ Λ, σ ∈ Σ, γµ ∈ Γµ and γν ∈ Γν .

The operators γµ and γν in the fixpoint formula are called µ-schemes and ν-
schemes, respectively. These are used to recover temporal operators (EF,AF,
etc. in classical CTL) and are crucial in characterizing CCTLΓµ,Γν within the
mu-calculus.

Example 3.8. In the literature, the modality symbols ♠P+
♦

and ♠P+

�
in CTL

are respectively denoted by E and A. The modality symbols ♠G1,≥q and ♠G1,>q
in PCTL are respectively denoted by P≥q and P>q [1]. The modality symbol
♥Pred(F ) in both CTL and PCTL is often denoted by X. In both CTL and
PCTL, their sets of µ-schemes and ν-schemes are respectively given by {

(
∨

( ∧ )
)
} and {

(
∧ ( ∨ )

)
}. The least/greatest fixpoint formulas made of(

∨ ( ∧ )
)
/
(
∧ ( ∨ )

)
is often denoted by U/W. 11

The relationships between SFml,PFml,CCTL can be summarized as follows:

CCTL SFml PFml

ΩX ΩZX ,

J KSFml

J KSFml

J KPFml
♠σ

♥λ

where the semantics J KSFml and J KPFml is defined below [5].
11 Another (equivalent) choice of Γµ and Γν is possible: we can put Γµ = {∨,

(
∨ ( ∧

)
)
} and Γν = {∧,

(
∧ ( ∨ )

)
}, and the least/greatest fixpoint formula made of

∨/∧ is denoted by F/G.
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Definition 3.9 (semantics of PFml and SFml formulas). For each PFml
formula ϕ with free variables u1, . . . , um, and each SFml formula ψ, their inter-
pretation JϕKPFml :

(
ΩZX

)m → ΩZX and JψKSFml : Ω
X are defined in the following

mutually inductive manner: for ~V = V1, . . . , Vm with Vi : X → Ω,

JuiKPFml(~V ) := Vi,

J�γ
(
ϕ1, . . . , ϕ|γ|

)
KPFml(~V ) := γ

(
Jϕ1KPFml(~V ), . . . , Jϕ|γ|KPFml(~V )

)
,

J♥λϕKPFml(~V ) := J♥λK
(
Jϕ1KPFml(~V ), . . . , JϕnKPFml(~V )

)
,

Jµu. ϕKPFml(~V ) :=
(
µ
(
JϕKPFml(~V , ) : ΩZX → ΩZX

) )
,

Jνu. ϕKPFml(~V ) :=
(
ν
(
JϕKPFml(~V , ) : ΩZX → ΩZX

) )
,

JψKPFml(~V ) := ζ∗1 (JψKSFml),

J�γ
(
ψ1, . . . , ψ|γ|

)
KSFml := γ

(
Jψ1KSFml, . . . , Jψ|γ|KSFml

)
,

J♠σϕKSFml := J♠σK(JϕKPFml),

where

J♥λK := ζ∗2 ◦ λZX : ΩZX → ΩZX ,

J♠σK :=
(
tr(c′)

)∗ ◦ σZX : ΩZX → ΩX .

In this interpretation, f∗ denotes the pullback of a map f , and µ, ν denote the
least/greatest fixpoint of the monotone function JϕKPFml(~V , ) : ΩZX → ΩZX .

Definition 3.10 (path-based semantics of CCTL). The path-based seman-
tics of a CCTL formula ψ is given by JψKSFml. Especially, the interpretations
of the restricted fixpoints ♠σ(µu. �γµ (ψ1, . . . , ψ|γµ|−1,♥λu)) and ♠σ(νu. �γν
(ψ1, . . . , ψ|γν |−1,♥λu)) are given by

J♠σ(µu.�γµ (ψ1, . . . , ψ|γµ|−1,♥λu))KPFml = J♠σK(µΦλ,γµ,(ϕ1,...,ϕ|γµ|)
)

J♠σ(νu.�γν (ψ1, . . . , ψ|γν |−1,♥λu))KPFml = J♠σK(ν Φλ,γν ,(ϕ1,...,ϕ|γν |)
)

where

Φλ,γ,(ϕ1,...,ϕ|γ|) := γ(Jϕ1KPFml, . . . , Jϕ|γ|KPFml, J♥λK( )) : ΩZX → ΩZX

whose subscripts we will sometimes omit.

Example 3.11 (instantiations of CCTL, cf. Ex. 3.2). Using the BT situation
SND, we can obtain classical CTL semantics [12]. The instantiated operators JEK
and JAK respectively map a predicate Q (on computation paths) to the predicates

{x ∈ X | there is a computation path π of x with π ∈ Q},
{x ∈ X | every computation path π of x belongs to Q}.

The operator JXK maps a path predicate Q to the path predicate

{π ∈ Xω | the tail of π belongs to Q}.
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Using the BT situation SR, we can also obtain the PCTL semantics [18]. The
instantiated operator JP≥qK maps a path predicate Q to{

x ∈ X
∣∣∣∣ the probability of computation paths of x belonging to Q
is greater than or equal q

}
.

4 Fixpoint Characterization of CCTL

The aim of this section is to give an alternative step-wise semantics of CCTL,
and prove its equivalence to the path-based semantics (Def. 3.10). The equiv-
alence, fixpoint characterization, is crucial in obtaining our polynomial time
model-checking algorithm of CCTL formulas in §5.

4.1 A coalgebraic µ-calculus µCCTL

We first introduce a fragment µCCTL of the coalgebraic µ-calculus [19, 38]. The
fragment instantiates the coalgebraic µ-calculus using composite modalities♠σ♥λ,
and restricts formulas inside fixpoints to be in a particular form.

Definition 4.1 (the µ-calculus µCCTL). Let Σ,Λ be sets, and Γ be a ranked
alphabet. We define the µ-calculus µCCTL

Γµ,Γν
by the following grammar:

θ ∈ µCCTL
Γµ,Γν ::=�γ (θ1, . . . , θ|γ|) | ♠σ♥λθ

| µu.�γµ (θ1, . . . , θ|γµ|−1,♠σ♥λu)
| νu.�γν (θ1, . . . , θ|γν |−1,♠σ♥λu)

where u is a proposition variable, γ ∈ Γ , λ ∈ Λ, σ ∈ Σ, and γµ ∈ Γµ, γν ∈ Γν .

Note here our µCCTL
Γµ,Γν

has no open formula since any occurrence of variables is
bound immediately.

Definition 4.2 (semantics of µCCTL formulas). For each µCCTL
Γµ,Γν

formula θ,
its interpretation JθKµCCTL ∈ ΩX is defined by:

J�γ
(
θ1, . . . , θn

)
KµCCTL := γ

(
Jθ1KµCCTL , . . . , JθnKµCCTL

)
,

J♠σ♥λθKµCCTL := J♠σ♥λK
(
JθKµCCTL

)
,

Jµu. �γµ (θ1, . . . , θ|γµ|−1,♠σ♥λu)KµCCTL := µΨ(σ,λ),γµ,(θ1,...,θ|γµ|−1),

Jνu. �γν (θ1, . . . , θ|γν |−1,♠σ♥λu)KµCCTL := ν Ψ(σ,λ),γν ,(θ1,...,θ|γν |−1),

where we denote monotone functions

J♠σ♥λK := c∗ ◦ σFX ◦ λX : ΩX → ΩX ,

Ψ(σ,λ),γ,(θ1,...,θ|γ|−1) := γ(Jθ1KµCCTL , . . . , Jθ|γ|−1KµCCTL , J♠σ♥λK( )) : ΩX → ΩX ,

whose subscripts we will sometimes omit.
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Example 4.3. In SND, the operator JEXK maps a predicate P on states to the
predicate

{x ∈ X | there is a successor x′ of x with x′ ∈ Q}.

The operator JAXK is also defined similarly. In SR, the operator JP≥qXK maps a
predicate P to the predicate{

x ∈ X
∣∣∣∣ the probability of successors of x belonging to Q
is greater than or equal to q

}
.

4.2 Step-wise Semantics of CCTL and Fixpoint Characterization

To define the step-wise semantics of CCTL, we first define a bijective translation
between µCCTL formulas and CCTL formulas.

Definition 4.4 (translation of µCCTL into CCTL). We define a translation ι
of µCCTL

Γµ,Γν
formulas θ into CCTLΓµ,Γν formulas by

ι
(
�γ(θ1, . . . , θ|γ|)

)
:= �γ(ιθ1, . . . , ιθ|γ|),

ι
(
♠σ♥λθ

)
:= ♠σ♥λ(ιθ),

ι
(
µu.�γµ (θ1, . . . , θ|γµ|−1,♠σ♥λu)

)
:= ♠σ

(
µu.�γµ (ιθ1, . . . , ιθ|γµ|−1,♥λu)

)
,

ι
(
νu.�γν (θ1, . . . , θ|γν |−1,♠σ♥λu)

)
:= ♠σ

(
νu.�γν (ιθ1, . . . , ιθ|γν |−1,♥λu)

)
.

The translation ι is a bijection between µCCTL formulas and CCTL formulas.
We call the inverse map ι−1 the (fixpoint) encoding of CCTL into µCCTL. Via
this encoding, the semantics of µCCTL induces another semantics of CCTL, the
step-wise semantics of CCTL.

Definition 4.5 (step-wise semantics). The step-wise semantics of each CCTL-
formula ψ is given by Jι−1ψKµCCTL .

We will prove the so-called fixpoint characterization, which is the equivalence
of the path-based semantics (Def. 3.10) and the step-wise semantics (Def. 4.5)
of CCTL. The classical fixpoint characterization theorem [13] for CTL asserts,
for example, the following equivalence (1). The LHS below is the (path-based)
interpretation of the CTL formula E(µu.θ∨Xu), and the RHS below is the (step-
wise) interpretation of the Lµ formula that encodes the formula E(µu.θ ∨ Xu).

JE(µu.θ ∨ Xu)K = Jµu.θ ∨ EXuK. (1)

Fig. 1 illustrates the critical difference between these two interpretations. To
verify the CTL formula E(µu.θ∨Xu), the path-based semantics (Fig. 1a) searches
for a computation path along which the property θ eventually occurs. In contrast,
the step-wise semantics (Fig. 1b) searches in a breadth-first manner for a state
validating the property θ in the computation tree.

We generalize this classical result to our coalgebraic setting:
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(a) Via the path-based semantics

θ?

θ?

θ?

x

x′1

x′2

x′′1

x′′2

x′′′2

x′′′1

. . .

. . .
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(b) Via the step-wise semantics

Fig. 1: Two equivalent interpretations of the CTL formula E(µu.θ ∨ Xu).

Theorem 4.6 (fixpoint characterization). If the BT situation S with max-
imal execution satisfies Assum. 4.7, we have JθKµCCTL = JιθKSFml for every µCCTL

formula θ, and Jι−1ψKµCCTL = JψKSFml for every CCTL formula ψ.

In this theorem, we identify sufficient conditions on the BT situation in categor-
ical terms so that the fixpoint characterization holds.

Assumption 4.7 (the main assumption).

1. T is an affine monad,
2. the maximal trace tr(c′) satisfies

X × TZX T (X × ZX)

X TZX ,

stX,ZX

tr(c′)
〈idX ,tr(c′)〉 T 〈ζ1,idZX 〉 (2)

3. for every σ ∈ Σ, evσ = σΩ(idΩ) : TΩ → Ω is an Eilenberg-Moore T -algebra,
4. for every σ ∈ Σ, λ ∈ Λ, and for every µ-scheme γµ ∈ Γµ and ν-scheme
γν ∈ Γν , we have

J♠σK(µΦλ,γµ,ι~θ|γµ|) v µΨ(σ,λ),γµ,~θ|γµ|
, (3)

J♠σK(νΦλγν ,ι~θ|γν |) w νΨ(σ,λ),γν ,~θ|γν |
, (4)

for every tuple of µCCTL
Γµ,Γν

formulas ~θ|γ| = (θ1, . . . , θ|γ|), where Ψ, Φ are the
operators defined in Def. 3.10 and Def. 4.2,

5. for every γ ∈ Γµ ∪ Γν and σ ∈ Σ, γ : Ω|γ| → Ω is bilinear [25, Section 1]
with respect to the T -algebra evσ : TΩ → Ω, i.e.,

Ωn × TΩ T (Ωn ×Ω) TΩ

Ωn ×Ω Ω

stΩn,Ω

idΩn×evσ

Tγ

evσ
γ

(5)
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where n = |γ| − 1. In the case |γ| = 0, the above diagram becomes

1× T1 T (1× 1) TΩ

1× 1 Ω,

st1,1

id1×!T1

Tγ

evσ
γ

(6)

6. for every σ ∈ Σ and λ ∈ Λ, the map evλ ◦ injα : Ω|α| → Ω is bilinear w.r.t.
evσ, where injα : Ω

|α| →
∐
α∈AΩ

|α| is the injection of the index α.

Let us explain each condition in Assum. 4.7.

1. This condition is needed here to ensure the compatibility of the strength
map of T with the first projection (that is, Tπ1 ◦ stX,Y = ηX ◦ π2), which,
in turn, ensures that the original T ◦F -coalgebra structure can be recovered
from its execution map tr(c′) (that is, T (Fζ1 ◦ ζ2) ◦ tr(c′) = c).

2. This condition is quite technical but harmless and used to prove one of our
key results, Prop. 4.9. A similar condition can be found in [23], as strong
affine-ness. Indeed, we can show every strongly affine monad satisfies condi-
tion 2. Since both P+ and G1 are strongly affine, condition 2 is satisfied by
both SND and SR (see Table 2).

3. This condition, especially the associativity of the Eilenberg-Moore T -algebra
evσ, enables us to reduce many-fold branching (i.e., several applications of
the path quantifier σ) to single branching (i.e., just one application).

4. This condition states that the path quantifier σ preserves the least/greatest
fixpoints of the operators Ψ, Φ. In the logical perspective, the inequality (3)
means “any path-based witness can be reached in step-wise manner,” and
the inequality (4) means “step-wise validity guarantees path-based validity.”

5. This condition expresses the bilinearity of µ-schemes γµ ∈ Γµ and ν-schemes
γν ∈ Γν : each application of a path quantifier ♠σ on a formula of the form
�γ(~ψ,♥λϕ) is calculated by passing ♠σ inside, as �γ(~ψ,♠σ♥λϕ).

6. This condition captures the coherence between path quantifiers σ ∈ Σ and
next-time operators λ ∈ Λ. If we choose the canonical predicate lifting
Pred(F ) as λ, this condition is a consequence of condition 5, because Pred(F )
is constructed from conjunction, i.e., evλ ◦ injα = ∧; see Example 2.5 (1).

Before starting the proof of Thm. 4.6, we introduce two important results.
The first one (Lem. 4.8) is a consequence of condition 1 of Assum. 4.7, and

states that taking the head (ζ1) of the tail (ζ2) of paths starting from a state x
yields successors of x.

Lemma 4.8. T (Fζ1 ◦ ζ2) ◦ tr(c′) = c.

The second one (Prop. 4.9) is a coalgebraic generalization of the expansion
law [1] of CTL. When instantiated to the CTL formula E(p1Up2), the expansion
law expands the formula as

JE(p1Up2)K = p2 ∨ (p1 ∧ JEXKJE(p1Up2)K).

Analogous to the classical one, our coalgebraic expansion law is critically used
in the induction in the proof of the fixpoint characterization. It depends on all
conditions of Assum. 4.7 but condition 4.
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Proposition 4.9 (coalgebraic expansion law). Let σ ∈ Σ, λ ∈ Λ, and
µ-schemes γµ ∈ Γµ and ν-schemes γν ∈ Γν . We have

J♠σK(µΦλ,γµ,ι~θ|γµ|−1
) w Ψ(σ,λ),γµ,~θ|γµ|−1

(
J♠σK(µΦλ,γµ,ι~θ|γµ|−1

)
)

(7)

for θ1, . . . , θ|γµ|−1 with JιθiKSFml w JθiKµCCTL for i = 1, . . . , |γµ| − 1, and

J♠σK(ν Φλ,γν ,ι~θ|γν |−1
) v Ψ(σ,λ),γν ,~θ|γν |−1

(
J♠σK(ν Φλ,γν ,ι~θ|γν |−1

)
)

(8)

for θ1, . . . , θ|γν |−1 with JιθiKSFml v JθiKµCCTL for i = 1, . . . , |γν | − 1. Furthermore,
if JιθiKSFml = JθiKµCCTL for every subformula θi, the inequalities 7 and 8 are both
equalities.

Proof (Sketch of Thm. 4.6). Since ι is a bijection between µCCTL and CCTL, it
suffices to show

JθKµCCTL = JιθKSFml (9)
for every θ ∈ µCCTL. We prove eq. (9) by induction on the construction of θ.

For θ = �γ(θ1, . . . , θ|γ|), eq. (9) is straightforward.
For θ = ♠σ♥λθ′, by I.H. and naturality of λ and σ, we obtain

Jι(♠σ♥λθ′)KSFml =
(
T (Fζ1 ◦ ζ2) ◦ tr(c′)

)∗ ◦ σFX ◦ λX(Jθ′KµCCTL).

Thus, by Lem. 4.8 and Def. 4.2, we have

Jι(♠σ♥λθ′)KSFml = c∗ ◦ σFX ◦ λX(Jθ′KµCCTL) = J♠σ♥λθ′KµCCTL .

Next, we move on to the case θ = µu. �γµ (θ1, . . . , θ|γµ|−1,♠σ♥λu). Firstly,
we hypothesize θ1, . . . , θ|γµ|−1 with JιθiKSFml = JθiKµCCTL for i = 1, . . . , |γµ| − 1.
Under the notation introduced in Def. 3.10 and Def. 4.2, we have

Jµu.�γµ (θ1, . . . , θ|γµ|,♠σ♥λu)KµCCTL = µΨγµ,~θ|γµ|
,

Jι
(
µu.�γµ (θ1, . . . , θ|γµ|,♠σ♥λu)

)
KSFml = J♠σKµΦγµ,~ιθ|γµ| .

Thus, the last task is to prove J♠σK(µΦγ,~ψ) = µΨγ,~ψ. The direction LHS v RHS
is already assumed in condition 4 of Assum. 4.7.

We show the other direction, LHS w RHS. To prove this, we recall the
Knaster-Tarski fixpoint theorem [35]: the least fixpoint of a monotone function on
a complete lattice is exactly the minimal of all pre-fixpoints of the function. Since
LHS is a pre-fixpoint of the operator Ψ by Prop. 4.9, we conclude LHS w RHS
by the Knaster-Tarski fixpoint theorem.

The proof for the case θ = νu.�γν (θ1, . . . , θ|γν |−1,♠σ♥λu) is similar to the
least fixpoint case since condition 4 of Assum. 4.7 is symmetric to µ and ν.

Examining the above proof, we can also obtain a partial fixpoint characterization.

Proposition 4.10 (partial fixpoint characterization). Under the same as-
sumption of Thm. 4.6 (Assum. 4.7) but without condition 4, we have

1. JθKµCCTL = JιθKSFml for a formula θ without any µ or ν,
2. JθKµCCTL v JιθKSFml for a formula θ with only µ’s,
3. JθKµCCTL w JιθKSFml for a formula θ with only ν’s.
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4.3 Examples and Non-examples of Assum. 4.7

The non-deterministic BT situation SND satisfies Assum. 4.7, as expected.

Proposition 4.11. SND satisfies Assum. 4.7 with Γµ = {
(
∨ ( ∧ )

)
} and

Γν = {
(
∧( ∨ )

)
}. Thus, SND enjoys the fixpoint characterization (Thm. 4.6).

Proof (Sketch). The conditions of Assum. 4.7 other than 4 can be shown by
literal calculation. Condition 4 is instantiated in SND as

JE(θ1Uθ2)K ⊆ µu. θ2 ∨ (θ1 ∧ JEXKu)
JE(θ1Wθ2)K ⊇ νu. θ1 ∧ (θ2 ∨ JEXKu)

for E (the A case is given likewise). Proof of these inequalities is presented in [1,
Thm. 6.23]. Note that although there the state set is assumed to be finite, this
assumption can be lifted: the proof uses the expansion law, but the law can be
obtained by checking the conditions of Assum. 4.7 other than 4 (recall our proof
of the coalgebraic expansion law does not depend on condition 4). The rest of
the proof in [1] can be done without the finiteness assumption.

On the other hand, the probabilistic BT situations (SR and SqR) fail to satisfy
some conditions of Assum. 4.7, and hence to have the fixpoint characterization.
Fact 4.12. SR and SqR do not satisfy Assum. 4.7.

Firstly, SR does not satisfy condition 3 of Assum. 4.7, i.e., the requirement
for the G1-modality σ = ≥q : G1(2,P2)→ (2,P2) to be an Eilenberg-Moore
G1-algebra in SB. Indeed, the modality breaks the associativity condition of
Eilenberg-Moore G1-algebras. The associativity means the following diagram
commutes for every ρ ∈ G1(G1(2,P2)) ∼= G1([0, 1], Σ[0,1]), where Σ[0,1] is the
Borel set generated from the usual topology of [0, 1]:

G1(G1(2,P2)) ∼= G1([0, 1], Σ[0,1]) G1(2,P2) ∼= ([0, 1], Σ[0,1])

G1(2,P2) ∼= ([0, 1], Σ[0,1]) (2,P2).

G1(≥q)

µ(2,P2) ≥q

≥q

The commutativity of this diagram can be further rephrased as follows: the
condition ρ([q, 1]) ≥ q is equivalent to

∫
r∈[0,1] ρ(r) dr ≥ q for every measure ρ.

However, by taking a real number q other than 0 or 1, this equivalence fails.
Thus, the associativity condition of Eilenberg-Moore G1-algebras also fails for q
other than 0 or 1.

This suggests that by restricting the modality parameter q to 0 or 1, we can
make condition 3 hold. This restriction is realized by the BT situation SqR (see
Example 3.2).

Nevertheless, for SqR, condition 4 of Assum. 4.7 is violated. The violation
can be seen in a simple counterexample shown in Fig. 2 (found in [3]). While
the PCTL formula P≥1(µu.p ∨ Xu) is interpreted as {x, y} in this example, the
encoded probabilistic mu-formula µu.p ∨ P≥1Xu is interpreted as {y}. Thus, we
have P≥1(µu.p ∨ Xu) A µu.p ∨ P≥1Xu, which breaks condition 4 of Assum. 4.7.
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x y

¬p p
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Fig. 2: A coun-
terexample
Markov chain.

Nonetheless, we also have the following positive result.

Proposition 4.13. SqR with its state space (X,PX) for a
countable set X satisfies the other conditions of Assum. 4.7
than condition 4 with Γµ = {

(
∨ ( ∧ )

)
} and Γν = {

(
∧

( ∨ )
)
} Thus, SqR with countable (X,PX) enjoys the partial

fixpoint characterization (Prop. 4.10).

Remark 4.14. We saw we can not construct a step-wise se-
mantics of PCTL equivalent to its path-based one via our
encoding (Def. 4.4). In fact, we can make a stronger statement: any fixpoint en-
coding of PCTL into the probabilistic mu-calculus does not preserve semantics.
Indeed, PCTL does not have the finite model property [3], whereas the proba-
bilistic mu-calculus does [7]. One example of PCTL formula with no finite model
is P>0G(¬p ∧ P>0Fp) for any atomic predicate p.

5 A Polynomial-time Model-Checking Algorithm for
CCTL

Thanks to the fixpoint characterization, we can obtain a polynomial-time model-
checking algorithmMCCCTL

S for CCTL. It is based on the standard model-checking
algorithm for CTL [8]. Nevertheless, the algorithm MCCCTL

S is described in cat-
egorical terms, with the following additional conditions on the BT situation S.

Assumption 5.1.

1. The ambient category C is concrete [27].
2. The underlying set of X is finite, with its size denoted by |X|.
3. The underlying set of Ω is 2.

By Assum. 5.1, we can identify Ω-predicates with subsets of the underlying set
of X and the maps γ and J♠σ♥λK with corresponding predicate transformers.

Given the BT situation S and a specification ψ ∈ CCTL, the algorithmMCCCTL
S

calculates JψKSFml, which is the interpretation of ψ. The calculation steps are
shown in Algo. 1. Firstly, the CCTL formula ψ is encoded into a µCCTL formula
ι−1ψ (cf. Def. 4.4). Next, the µCCTL formula ι−1ψ is passed to the procedure
CHECK(ι−1ψ), which is the core of MCCCTL

S . The procedure call calculates
Jι−1ψKµCCTL in a step-wise manner. The calculation result coincides with JψKSFml

by the fixpoint characterization (Thm. 4.6).
The procedure CHECK(θ) is a simplification of an existing model-checking

algorithm for the coalgebraic µ-calculus Cµ [19]. In the body of CHECK(θ),
one out of four cases is chosen according to the structure of θ. The first two
cases, one for boolean operators and one for modalities, are straightforward. In
the least fixpoint case, we exploit the Cousot-Cousot fixpoint theorem [9], which
approximates the least fixpoint by an ascending chain in ΩX starting from the
least element ⊥. The greatest fixpoint case is similar to the least fixpoint case.
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Algorithm 1 A CCTL model-checking algorithm MCCCTL
S .

Input: A CCTL formula ψ.
Output: An Ω-predicate U ∈ ΩX . . where S = (C, T, F, c, Ω,Σ,Λ).
1: procedure CHECK(θ)
2: switch θ do

3: case �γ(θ1, . . . , θ|γ|)
4: return γ(CHECK(θ1), . . . ,CHECK(θ|γ|))
5: end case

6: case ♠σ♥λθ′
7: return J♠σ♥λK(CHECK(θ′))
8: end case

9: case µu.�γ (θ1, . . . , θ|γµ|−1,♠σ♥λu)
10: U := ⊥; V := γµ

(
CHECK(θ1), . . . ,CHECK(θ|γµ|−1), J♠σ♥λK(⊥)

)
11: while U 6= V do
12: U := V
13: V := γµ

(
CHECK(θ1), . . . ,CHECK(θ|γµ|−1), J♠σ♥λK(U)

)
14: end while
15: return U
16: end case

17: case νu.�γν (θ1, . . . , θ|γν |−1,♠σ♥λu)
18: U := >; V := γν

(
CHECK(θ1), . . . ,CHECK(θ|γν |−1), J♠σ♥λK(>)

)
19: while U 6= V do
20: U := V
21: V := γν

(
CHECK(θ1), . . . ,CHECK(θ|γν |−1), J♠σ♥λK(U)

)
22: end while
23: return U
24: end case

25: end procedure
26: return CHECK(ι−1ψ)

Termination of CHECK(θ), and hence MCCCTL
S as a whole, is a direct con-

sequence of our finiteness assumption in Assum. 5.1. The encoding ι−1 is also
terminating. Correctness, particularly that of the two while loops (at Line 11
and Line 19), follows from the Cousot-Cousot fixpoint theorem.

Proposition 5.2 (termination and correctness of MCCCTL
S ). For a given

CCTL formula ψ, the algorithm MCCCTL
S terminates and returns JψKSFml.

To estimate the complexity bound of our algorithm MCCCTL
S , we abstract the

time to compute each modality ♠σ♥λ. Our formulation here follows [20, Def. 2].

Definition 5.3 (one-step satisfaction problem [20, Def. 2]). The one-
step satisfaction problem w.r.t. σ and λ for a state x ∈ X and an Ω-predicate
U is to decide whether x ∈ J♠σ♥λK(U) or not. We denote the time to solve this
problem by t

(
(σ, λ), x, U

)
and define t(σ, λ) = maxx∈X,U∈ΩX t

(
(σ, λ), x, U

)
.

We show MCCCTL
S is at most polynomial time under moderate assumptions.

Proposition 5.4 (complexity bound of MCCCTL
S ). Let |ψ| be the number

of subformulas in ψ, and N be a constant that bounds the time to execute the
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boolean operations used in ψ. The complexity of MCCCTL
S is given by

O
(
|ψ| · |X| ·

(
N + t(σ, λ) + 2 · t(σ, λ) ·N

)
+ |ψ|

)
.

When t(σ, λ) is polynomial to the size |X|, so is the complexity of MCCCTL
S .

Example 5.5 (fixpoint model checking for CTL). The instance MCCCTL
SND

corresponds to the well-known model-checking algorithm for CTL via fixpoints [8].
Since the time t(σ, λ) is bounded by |X| as in [20, Example 3], Prop. 5.4 recovers
the known quadratic complexity bound of the classical algorithm.

6 Conclusion and Future Work

We formulated a new path-based coalgebraic logic CCTL (Def. 3.7), as an ab-
straction of classical CTL. We introduced an encoding of CCTL formulas into
step-wise µCCTL formulas, which captures the categorical essence of the standard
encoding of CTL into Lµ. This encoding is proven to preserve the semantics
(Thm. 4.6) under some semantic conditions (Assum. 4.7) formulated in purely
categorical terms. We saw these conditions distinguish classical CTL, which en-
joys the fixpoint characterization (Prop. 4.11), and PCTL, which violates some
conditions and enjoys only limited results (Prop. 4.13). Our coalgebraic fixpoint
characterization yielded a naive model-checking algorithm MCCCTL

S of CCTL,
whose complexity is analyzed to be polynomial (Prop. 5.4).

The genericity of our framework of CCTL will allow several interesting ex-
tensions: n-ary next-time operators and non-boolean logical connectives could
be smoothly incorporated. By changing the branching type T , our framework is
expected to not only encompass other known examples like quantitative variants
of CTL [4, 30] but also yield novel efficient path-based logics. We will investigate
monotone neighborhood frames [16] and aim to establish “Monotone Neighbor-
hood CTL” which would provide an efficient path-based language for Parikh’s
game logic [17, 31]. We will also explore [0, 1]-valued probabilistic path-based
logics and corresponding probabilistic mu-calculus validating the fixpoint char-
acterization. Such path-based logics would resemble the quantitative LTL [6].

We could also extend our encoding ι−1 to the coalgebraic path-based logic
µL, as an abstraction of classical exponential encodings of CTL* into the mu-
calculus [2, 10].
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A Auxiliary Definitions

Definition A.1 (commutative monad, [24, Def. 5.2.9]). Let C be a cat-
egory with finite products.

1. A functor F : C→ C is called strong if it is equipped with a natural transfor-
mation {stX,Y : X×FY → F (X×Y )}X,Y ∈C, called strength, which satisfies
the following diagrams:

1× FX F (1×X)

FX,

st1,X

π2
Fπ2

(10)

X × (Y × FZ) X × F (Y × Z) F (X × (Y × Z))

(X × Y )× FZ F ((X × Y )× Z).

idX×stY,Z

∼=

stX,Y×Z

∼=
stX×Y,Z

(11)
2. A monad T : C→ C is called strong if T is strong as a functor and moreover

its strength stX,Y : X × TY → T (X × Y ) satisfies the following diagrams:

X × Y X × Y

X × TY T (X × Y ),

=

idX×ηY ηX×Y

stX,Y

(12)

X × T 2Y T (X × TY ) T 2(X × Y )

X × TY T (X × Y ).

stX,TY

idX×µY

T stX,Y

µX×Y

stX,Y

(13)

3. Let T be a strong monad with its strength st. The monad T is called com-
mutative if the following diagram holds:

T (TX × Y ) T 2(X × Y )

TX × TY T (X × Y )

T (X × TY ) T 2(X × Y )

T st′X,Y

µX×YstTX,Y

st′X,TY T stX,Y
µX×Y

(14)
where the map st′X,Y : TX × Y → T (X × Y ) is defined to be the composite

TX × Y Y × TX T (Y ×X) T (X × Y ).
∼= stY,X ∼= (15)

The map in diagram 14 is called double strength and denoted dst.
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Remark A.2 (compatibility with the first projection). Note that condi-
tion 10 and the naturality of st induce the following compatibility with the first
projection:

X × TY T (X × Y )

TX TX

stX,Y

π2 Tπ2

=

(16)

by

X × TY T (X × Y )

1× TY T (1× Y )

TY TY.

stX,Y

!X×idTY

π2

T (!X×idY )

π2

st1,Y

π2 Tπ2

=

Compatibility with second projection, however, is not always guaranteed; see
Lem. A.4.

Definition A.3 (affine monad, [22, Def. 4.1]). Let T : C → C be a com-
mutative monad. The monad T is called affine if any of the following holds:

1. the unit η1 : 1→ T1 is isomorphic, or
2. 〈Tπ1, Tπ2〉 ◦ dstX,Y = idTX×TY : TX × TY → TX × TY for each X,Y ∈ C.

If the ambient category C has pullbacks, every monad T has the largest affine
submonad T a, called the affine part of T (Jacobs [22, Def. 4.5]), given by

T aX TX

1 T1.

T !X

η1

The important property of T a is that if T is commutative, then so is T a, and
distributive laws of T restricts to T a (the latter result is found in Cîrstea [3,
Prop. 1]).

Lemma A.4 (compatibility with first projections). Let T : C → C be a
commutative affine monad. We have the following diagram commutes.

X × TY T (X × Y )

X TX.

stX,Y

π1 Tπ1

ηX

(17)

Proof. Easily obtained from the affine-ness.
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For Eilenberg-Moore algebras of commutative monads, we can define bilin-
earity of maps.

Definition A.5 (m-linear map, Kock [25, Section 1]). Let T : C → C
be a commutative monad, a : TA → A and c : TC → C be (Eilenberg-Moore)
T -algebras and B ∈ C. A map f : A × B → C is called 1-linear if the diagram
below commutes:

TA×B T (A×B) TC

A×B C.

st′A,B

a×idB

Tf

c

f

Similarly, if A is a mere object and b : TB → B is a T -algebra, 2-linearity can
be defined likewise, using the strength map stA, B : A × TB → T (A × B). We
define m-linearity of an n-ary map f : A1×· · · ×An → C (1 ≤ m ≤ n) quite the
same way, and f is called bilinear if f is m-linear for every m = 1, . . . , n.

We note that bilinearity of f : A1 ×· · · × An → C is equivalently defined using
T ’s double strength:

TA1 ×· · · × TAn T (A1 ×· · · ×An) TC

A1 ×· · · ×An C.

dstn

a1×···×an

Tf

c

f

(18)

A distributive law of F over T assures compatibility of these two endofunctors
required in the path-based semantics.

Definition A.6 (distributive law, [24, Def. 5.2.4]). Let F : C → C be a
functor and T : C→ C be a monad. A distributive law or K`-law of F over T is
a natural transformation ξ : FT ⇒ TF with

FX FX

FTX TFX,

=

FηX ηFX

ξX

(19)

FT 2X TFTX T 2FX

FTX TFX.

ξTX

FµX

TξX

µFX

ξX

(20)

For a polynomial functor and a commutative monad, we always have a canonical
distributive law.

Proposition A.7 ([24, Prop. 5.2.12]). For a simple polynomial functor F
and a commutative monad T , there is a distributive law ξ : FT ⇒ TF . We call
this distributive law the canonical one.
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We concretely show the canonical distributive law ξ w.r.t. a commutative monad
T and an arity functor F =

∐
α∈AX

|α| for some set A:

(TX)|α|
∐
α∈A(TX)|α| ∼= FTX

T (X |α|) T (
∐
α∈AX

|α|) ∼= TFX.

injα

(dst|α|)X ξA

T (injα)

(21)

The following technical lemma was presented by Cîrstea [5, Lemma 5.11] for
the semiring monads, which asserts exchangability of σ and λ via the distributive
law.

Lemma A.8. Let T be a commutative monad and F =
∐
α∈AX

|α|, and σ : Ω( ) →
ΩT and λ : Ω( ) → ΩF be liftings of T and F , respectively. We suppose evσ
is an Eilenberg-Moore T -algebra and evλ ◦ injα : Ω|α| → Ω is bilinear w.r.t. evσ.
Then the following diagram commutes: for each Y ∈ C,

ΩY ΩTY ΩFTY

ΩFY ΩTFY ,

σY

λY

λTY

σFY

ξ∗Y (22)

where ξ is the canonical distributive law between F =
∐
α∈AX

|α| and T .

Proof. Note that evλ = [evλ ◦ injα]α∈A. The upper path of the diagram is given
by

λTY ◦ σY = evλ ◦ F (σY )

= [evλ ◦ injα]α∈A ◦
∐
α∈A

(evσ ◦ Tp)

=

[
evλ ◦ injα ◦ (×

|α|
evσ ◦ Tp)

]
α∈A

,

where×|α| denotes the |α|-times product. The lower path is also given by

ξ∗Y ◦ σFY ◦ λY = evσ ◦ T
([

evλ ◦ injα ◦×
|α|
p

]
α∈A

)
◦ ξY

= evσ ◦ T
([

evλ ◦ injα ◦×
|α|
p

]
α∈A

)
◦
[
T injα ◦ dst|α|

]
α

=

[
evσ ◦ T

(
evλ ◦ injα ◦×

|α|
p
)
◦ dst|α|

]
α

.
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Here we used the concrete construction of the canonical distributive law ξ; see
eq. (21). Thus, we have to check the equality

evλ ◦ injα ◦ (×
|α|

evσ ◦ Tp) = evσ ◦ T
(
evλ ◦ injα ◦×

|α|
p
)
◦ dst|α|

for each α ∈ A. These two form the following diagram (which was seen in
Cîrstea [5, Lemma 5.11] in the case evλ ◦ injα is given by the semiring multipli-
cation of semiring monads)

(TX)|α| (TΩ)|α| (Ω)|α|

T (X |α|) T (Ω|α|) TΩ Ω.

×|α| Tp

dst|α|

×|α| evσ

dst|α| evλ◦injα
T (×|α| p) T (evλ◦injα) evσ

(23)

The left square follows from the naturality of the n-ary strength, and the right
one is the bilinearity of the map evλ ◦ injα w.r.t. evσ.

B Detailed Proof of Thm. 4.6

We fix a BT situation S = (C, T, F, c,Ω,Σ,Λ) with maximal execution tr(c′),
and suppose S satisfies Assum. 4.7.

We prove several lemmas for Thm. 4.6, see Fig. 3. We first prove Lem. 4.8
(Lem. B.8) in appendix B.1. We then prove Prop. 4.9 (Prop. B.14) in ap-
pendix B.2. Finally, we show a detailed proof of Thm. 4.6 (Thm. B.15) in ap-
pendix B.3.

B.1 Proof of Lem. 4.8

Here we fix a distributive law ξ of F over T , assured by Prop. A.7.

Lemma B.1.

FX tr(c′) = dstX,FZX ◦
(
ηX × (ξZX ◦ F tr(c′))

)
. (24)

Proof. Firstly, when we have a distributive law ξ : FT ⇒ TF , we also have a
distributive law ξ′ : FXT ⇒ TFX by

ξ′A = dstX,FA ◦ (ηX × idTFA) ◦ (idX × ξA) : X × FTA→ T (X × FA).

By the definition of the Kleisli lifting (see §3.2), the Kleisli lifting FX of FX
maps tr(c′) to

FX tr(c′) = ξ′ZX ◦ (idX × F tr(c′)).

This equation can be reduced further by the definition of ξ′:

FX tr(c′) = ξ′ZX ◦ (idX × F tr(c′))

= dstX,FZX ◦ (ηX × idTZX ) ◦ (idX × ξFZX ) ◦ (idX × F tr(c′))

= dstX,FZX ◦
(
ηX × (ξZX ◦ F tr(c′))

)
.

This concludes the proof.
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B.1 B.2 1 3 6 2 5 4

A.4

B.3

B.4B.5

B.7B.6 B.9 A.8 B.12 B.11

B.10 B.13

Lem. 4.8
(B.8)

Prop. 4.9
(B.14)

the θ = ♠σ♥λθ′ case θ = µu.�γ (~θ,♠σ♥λu)

Thm. 4.6 (B.15)

Fig. 3: Dependencies between lemmas (in blue) and assumtions (in red) for prov-
ing Thm. 4.6 (in yellow).

Lemma B.2.
(ηX×FZX ◦ ζ)� tr(c′) = FX tr(c′)� c′. (25)

Proof. The statement comes from the equation Jζ � u = Fu� c tr(c′) defining
maximal trace (Def. 3.3.) Note that Jζ = ηX×FZX ◦ ζ by the definition of the
Kleisli embedding J .

Lemma B.3. 1. Tπ1 ◦ dstX,Y = π1 : TX × TY → TX,
2. Tπ2 ◦ dstX,Y = π2 : TX × TY → TY .

Proof. For the first equation, see the following commutative diagram.

TX × TY T (X × TY ) T 2(X × Y ) T (X × Y )

TX TX T 2X TX.

st′X,TY

π1

T stX,Y

Tπ1

µX×Y

T 2π1 Tπ1

idX TηX µX
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The left square is induced by equation 17, the middle one is by 16, and the right
one is by the naturality of the multiplication µ. Note that dstX,Y = µX×Y ◦
T stX,Y ◦ st′X,TY and µX ◦ TηX = idTX .

The second equation is obtained the same way.

Lemma B.4. 1. Tπ1 ◦ c′ = ηX ,
2. Tπ2 ◦ c′ = c.

Proof. Recall that c′ = dst ◦ 〈η, c〉. The equations are the straightforward conse-
quences of Lem. B.3.

Lemma B.5. T (ζ) ◦ tr(c′) = µX×FZX ◦T
(
dstX,FZX ◦

(
ηX × (ξ ◦F tr(c′))

))
◦ c′.

Proof. By the unitality of the monad T and the definition of the Kleisli compo-
sition �, we have

T (ζ) ◦ tr(c′) = idT (X×FZX) ◦ T (ζ) ◦ tr(c′)
=
(
µX×FZX ◦ T (ηX×FZX )

)
◦ T (ζ) ◦ tr(c′)

= µX×FZX ◦ T (ηX×FZX ◦ ζ) ◦ tr(c′)
= (ηX×FZX ◦ ζ)� tr(c′).

By Lem. B.2, we have (ηX×FZX ◦ ζ) � tr(c′) = FX tr(c′) � c′. The RHS of this
equation can be reduced to FX tr(c′) � c′ = µX×FZX ◦ T

(
FX tr(c′)

)
◦ c′ by the

definition of �. Finally, since FX tr(c′) = dstX,FZX ◦
(
ηX × (ξ ◦ F tr(c′))

)
by

Lem. B.1, we obtain

T (ζ) ◦ tr(c′) = µX×FZX ◦ T
(
FX tr(c′)

)
◦ c′

= µX×FZX ◦ T
(
dstX,FZX ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′.

Lemma B.6. Tζ1 ◦ tr(c′) = ηX .

Proof. Since ζ1 = π1 ◦ ζ, we have T (ζ1) ◦ tr(c′) = T (π1) ◦ T (ζ) ◦ tr(c′). Thus, by
Lem. B.5 and the naturality of µ, we have

T (ζ1) ◦ tr(c′) = T (π1) ◦ T (ζ) ◦ tr(c′)

= T (π1) ◦ µX×FZX ◦ T
(
dstX,FZX ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′

= µX ◦ T 2(π1) ◦ T
(
dstX,FZX ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′

= µX ◦ T
(
T (π1) ◦ dstX,FZX ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′.

By Tπ1 ◦ dstX,FZX = π1 by Lem. B.3, the above equation is

T (ζ1) ◦ tr(c′) = µX ◦ T
(
Tπ1 ◦ dstX,FZX ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′

= µX ◦ T
(
π1 ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′

= µX ◦ T (ηX ◦ π1) ◦ c′

= µX ◦ TηX ◦ Tπ1 ◦ c′.
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Finally, by the monad unitality µX ◦ TηX = idTX and Lem. B.4, we have

T (ζ1) ◦ tr(c′) = µX ◦ TηX ◦ Tπ1 ◦ c′

= Tπ1 ◦ c′

= ηX .

Lemma B.7.

T (ζ2) ◦ tr(c′) = µFZX ◦ T
(
ξ ◦ F tr(c′)

)
◦ c.

Proof. Since T (ζ2) ◦ tr(c′) = Tπ2 ◦ Tζ, by Lem. B.5, we have

T (ζ2) ◦ tr(c′) = Tπ2 ◦ Tζ ◦ tr(c′)

= Tπ2 ◦ µX×FZX ◦ T
(
dstX,FZX ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′.

Now we have Tπ2 ◦ µX×FZX = µFZX ◦ T 2π2 : T
2(X × FZX) → TFZX by

naturality of the multiplication µ. Combining this and Tπ2 ◦ dstX,FZX = π2 in
Lem. B.3 yields

T (ζ2) ◦ tr(c′) = µFZX ◦ T 2π2 ◦ T
(
dstX,FZX ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′

= µFZX ◦ T
(
Tπ2 ◦ dstX,FZX ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′

= µFZX ◦ T
(
π2 ◦

(
ηX × (ξ ◦ F tr(c′))

))
◦ c′

= µFZX ◦ T
(
ξ ◦ F tr(c′) ◦ π2

)
◦ c′

= µFZX ◦ T
(
ξ ◦ F tr(c′)

)
◦ Tπ2 ◦ c′.

Finally, by Tπ2 ◦ c′ = c in Lem. B.4, we have

T (ζ2) ◦ tr(c′) = µFZX ◦ T
(
ξ ◦ F tr(c′)

)
◦ Tπ2 ◦ c′

= µFZX ◦ T
(
ξ ◦ F tr(c′)

)
◦ c.

Lemma B.8 (Lem. 4.8). T (Fζ1 ◦ ζ2) ◦ tr(c′) = c.

Proof. By Lem. B.7, we have

T (Fζ1 ◦ ζ2) ◦ tr(c′) = T (Fζ1) ◦ T (ζ2) ◦ tr(c′)
= TFζ1 ◦ µFZX ◦ T

(
ξ ◦ F tr(c′)

)
◦ c.

Since TFζ1 ◦µFZX = µFX ◦T 2Fζ1 by the naturality of the multiplication µ, we
have

T (Fζ1 ◦ ζ2) ◦ tr(c′) = µFX ◦ T
(
TFζ1 ◦ ξ ◦ F tr(c′)

)
◦ c.
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Thus, it suffices to show TFζ1 ◦ ξ ◦ F tr(c′) = ηFX since µFX ◦ TηFX ◦ c = c.
This is obtained by the following diagram:

FTZX TFZX TF (X × FZX)

FX FT (X × FZX) FTX TFX

ξZX

FTζ

TFζ

TFπ1
F tr(c′)

F (Tζ◦tr(c′))

FηX

ξX×FZX

FTπ1 ξX

Here

– the upper-left triangle is trivial,
– the upper-middle and upper-right triangles come from the naturality of the

distributive law ξ, and
– the semicircle below is by Lem. B.6.

In conclusion, the bottom path of the above diagram ξX ◦ FηX is reduced as
ξX ◦FηX = ηFX by the definition of distributive laws (eq. (19) in Def. A.6).

B.2 Proof of Prop. 4.9

Lemma B.9 (Cîrstea [5, Lemma 3.1]). For σ ∈ Σ, we have σTY ◦ σY =
µ∗Y ◦ σY for each Y ∈ C.

Proof. Straightforward from the assumption that (Ω, evσ) is a T -algebra (con-
dition 3 in Assumption 4.7). See [5, Lemma 3.1] for details.

Lemma B.10. For σ ∈ Σ and λ ∈ Λ, we have J♠σ♥λK ◦ J♠σK = J♠σK ◦ J♥λK.

Proof. See the diagram below.

ΩZX ΩTZX ΩX

ΩFZX ΩTFZX ΩFTZX ΩFX

ΩTFZX ΩTTFZX ΩTFTZX ΩTFX

ΩTZX ΩX .

σZX

λZX

(
tr(c)

)∗
λTZX λX

σFZX

σFZX
σZX ◦ζ

∗
2

ξ∗ZX

σTFZX

(
F tr(c)

)∗
σFTZX σFX

µ∗FZX

(Tζ2)
∗

(TξZX )∗
(
TF tr(c)

)∗
c∗(

tr(c)
)∗

(26)
Here,

– the top-left rectangle is by Lem. A.8 (which is assured by 6 in Assump-
tion 4.7),
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– the top-right rectangle is by the naturality of λ,
– the middle-center and middle-right rectangles and the left hemisphere are

by the naturality of σ,
– the middle-left rectangles come from Lem. B.9, and
– the bottom rectangle is by Lem. B.7.

Lemma B.11. For γ ∈ Γµ ∪ Γν and σ ∈ Σ, we have the following: for every
f1, . . . , fn : X → Ω and g : ZX → Ω,(
stXn,ZX

)∗ ◦ σXn×ZX (γ ◦ (f1× · · · × fn× g)) = γ
(
f1× · · · × fn× σZX (g)

)
(27)

or, equivalently,

evσ ◦ Tγ ◦ T (f1 × · · · × fn × g) ◦ stXn,ZX = γ
(
f1 × · · · × fn × (evσ ◦ Tg)

)
, (28)

where n = |γ| − 1.

Proof. The LHS and RHS of eq. (28) is respectively depicted as the top and
bottom paths in the following diagram:

T (Xn × ZX) T (Ωn ×Ω) T (Ω)

Ωn × TΩ

Xn × TZX Ωn ×Ω Ω.

T (f1×···×fn×g) Tγ

evσ

idΩn×evσ

stΩn,Ω

f1×···×fn×(evσ◦Tg)

stXn,ZX f1×···×fn×Tg

γ

Here,

– the top-left trapezoid comes from the naturality of the strength st,
– the triangle below is straightforward, and
– the right rectangle is assumed in 5 in Assumption 4.7.

Lemma B.12.

T
(
〈ζ1, . . . , ζ1, idZX 〉

)
◦ tr(c′) = stXn,ZX ◦ 〈idX , . . . , idX , tr(c′)〉 (29)

Proof. The LHS and RHS of eq. (29) is respectively depicted as the bottom and
top paths of the following commutative diagram:

Xn × TZX T (Xn × ZX)

X × TZX T (X × ZX)

X TZX ,

stXn,ZX

stX,ZX

∆×idTZX T (∆×idZX )

tr(c′)

〈idX ,tr(c′)〉

〈idX ,...,idX ,tr(c′)〉

T 〈ζ1,idZX 〉

T
(
〈ζ1,...,ζ1,idZX 〉

)
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where ∆ : X → Xn is the diagonal map. Here,

– the left and right triangles comes from the definition of the diagonal ∆,
– the top trapezoid is the naturality of the strength (Def. A.1), and
– the top trapezoid is condition 2 of Assum. 4.7.

Lemma B.13. For γ ∈ Γµ ∪ Γν , ψ1, . . . , ψ|γ|−1 ∈ SFml and ϕ ∈ PFml, we have

J♠σ
(
�γ(ψ1, . . . , ψ|γ|−1, ϕ)

)
KSFml = J�γ(ψ1, . . . , ψ|γ|−1,♠σϕ)KSFml (30)

in other words,

J♠σK
(
γ(Jψ1KPFml, . . . , Jψ|γ|−1KPFml, JϕKPFml)

)
= γ

(
Jψ1KSFml, . . . , Jψ|γ|−1KSFml, J♠σK(JϕKPFml)

)
.

(31)

Proof. Since σ(f) = evσ◦T (f), the LHS and RHS of equation 30 (or equation 31)
are expressed as follows.

LHS =
(
tr(c′)

)∗ ◦ σZX (γ(Jψ1KPFml, . . . , Jψ|γ|−1KPFml, JϕKPFml)
)

= evσ ◦ T
(
γ
(
ζ∗1 (Jψ1KSFml), . . . , ζ

∗
1 (Jψ|γ|−1KSFml), JϕKPFml

))
◦ tr(c′)

= evσ ◦ Tγ ◦ T
(
Jψ1KSFml × · · · × Jψ|γ|−1KSFml × JϕKPFml

)
◦ T
(
〈ζ1, . . . , ζ1, idZX 〉

)
◦ tr(c′)

= evσ ◦ Tγ ◦ T
(
Jψ1KSFml × · · · × Jψ|γ|−1KSFml × JϕKPFml

)
◦ stXn,ZX ◦ 〈idX , . . . , idX , tr(c′)〉,

where the last transformation uses Lem. B.12. On the other hand, the RHS can
be written as

RHS = γ
(
Jψ1KSFml, . . . , Jψ|γ|−1KSFml, evσ ◦ T (JϕKPFml)

)
.

They are respectively the top and bottom paths from X to Ω in the diagram
below.

T (Xn × ZX) T (Ωn ×Ω) T (Ω)

X Xn × TZX Ωn ×Ω Ω.

T (Jψ1KSFml×···×Jψ|γ|−1KSFml×JϕKPFml) Tγ

evσ

〈idX ,...,idX ,tr(c′)〉 Jψ1KSFml×···×Jψ|γ|−1KSFml×(evσ◦T JϕKPFml)

stXn,ZX

γ

(32)
Commutativity of the rectangle in this diagram is guaranteed by Lem. B.11, by
letting fi = JψiKSFml and g = JϕKPFml.

Proposition B.14 (coalgebraic expansion law, Prop. 4.9). Let σ ∈ Σ,
λ ∈ Λ, and µ-schemes γµ ∈ Γµ and ν-schemes γν ∈ Γν . We have

J♠σK(µΦλ,γµ,ι~θ|γµ|−1
) w Ψ(σ,λ),γµ,~θ|γµ|−1

(
J♠σK(µΦλ,γµ,ι~θ|γµ|−1

)
)

(33)
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for θ1, . . . , θ|γµ|−1 with JιθiKSFml w JθiKµCCTL for i = 1, . . . , |γµ| − 1, and

J♠σK(ν Φλ,γν ,ι~θ|γν |−1
) v Ψ(σ,λ),γν ,~θ|γν |−1

(
J♠σK(ν Φλ,γν ,ι~θ|γν |−1

)
)

(34)

for θ1, . . . , θ|γν |−1 with JιθiKSFml v JθiKµCCTL for i = 1, . . . , |γν | − 1. Furthermore,
if JιθiKSFml = JθiKµCCTL for every subformula θi, the inequalities 7 and 8 are both
equalities.

Proof. We prove the µ case. The ν case is proven in the same way. By Lem. B.10,
we have

Ψ(σ,λ),γµ,~θ|γµ|−1

(
J♠σK(µΦλ,γµ,ι~θ|γµ|−1

)
)
= γµ

(
Jθ1KµCCTL , . . . , Jθ|γµ|−1KµCCTL , J♠σ♥λKJ♠σK(µΦλ,γµ,ι~θ|γµ|−1

)
)

= γµ
(
Jθ1KµCCTL , . . . , Jθ|γµ|−1KµCCTL , J♠σKJ♥λK(µΦλ,γµ,ι~θ|γµ|−1

)
)
.

Furthermore, by Lem. B.13, we obtain

Ψ(σ,λ),γµ,~θ|γµ|−1

(
J♠σK(µΦλ,γµ,ι~θ|γµ|−1

)
)
= γµ

(
Jθ1KµCCTL , . . . , Jθ|γµ|−1KµCCTL , J♠σKJ♥λK(µΦλ,γµ,ι~θ|γµ|−1

)
)

= J♠σK
(
γµ
(
Jθ1KµCCTL , . . . , Jθ|γµ|−1KµCCTL , J♥λK(µΦλ,γµ,ι~θ|γµ|−1

)
))

v J♠σK
(
γµ
(
Jιθ1KSFml, . . . , Jιθ|γµ|−1KSFml, J♥λK(µΦλ,γµ,ι~θ|γµ|−1

)
))
.

Here the last transformation comes from JιθiKSFml w JθiKµCCTL for i = 1, . . . , |γµ|−
1 and monotonicity of J♠σK and γµ (following from the definition of predicate
liftings (Def. 2.4)). Since µΦλ,γµ,ι~θ|γµ|−1

is a fixpoint of Φλ,γµ,ι~θ|γµ|−1
, we conclude

Ψ(σ,λ),γµ,~θ|γµ|−1

(
J♠σK(µΦλ,γµ,ι~θ|γµ|−1

)
)
v J♠σK

(
γµ
(
Jιθ1KSFml, . . . , Jιθ|γµ|−1KSFml, J♥λK(µΦλ,γµ,ι~θ|γµ|−1

)
))

= J♠σK
(
Φλ,γµ,ι~θ|γµ|−1

(µΦλ,γµ,ι~θ|γµ|−1
)
)

= J♠σK(µΦλ,γµ,ι~θ|γµ|−1
).

B.3 Detailed Proof of Thm. 4.6

Theorem B.15 (fixpoint characterization, Thm. 4.6). If the BT situation
S with maximal execution satisfies Assum. 4.7, we have JθKµCCTL = JιθKSFml for
every µCCTL formula θ, and Jι−1ψKµCCTL = JψKSFml for every CCTL formula ψ.

Proof. Since ι is a bijection between µCCTL and CCTL, it suffices to show

JθKµCCTL = JιθKSFml (35)

for every θ ∈ µCCTL. We prove eq. (35) by induction on the construction of θ.
For θ = �γ(θ1, . . . , θ|γ|), equation 35 is straightforward.
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For θ = ♠σ♥λθ′, by the induction hypothesis, we have Jιθ′KSFml = Jθ′KµCCTL .
Thus, we obtain, by Def. 3.9,

Jι(♠σ♥λθ′)KSFml = J♠σ♥λιθ′KSFml

=
(
tr(c′)

)∗ ◦ σZX (J♥λιθ′KPFml)

=
(
tr(c′)

)∗ ◦ σZX (ζ∗2 ◦ λZX Jιθ′KPFml)

=
(
tr(c′)

)∗ ◦ σZX (ζ∗2 ◦ λZX (ζ∗1 Jιθ′KSFml)
)

=
(
tr(c′)

)∗ ◦ σZX ◦ ζ∗2 ◦ λZX ◦ ζ∗1 (Jθ′KµCCTL).

Using naturality of λ and σ, the above equation is

Jι(♠σ♥λθ′)KSFml =
(
tr(c′)

)∗ ◦ σZX ◦ ζ∗2 ◦ Fζ∗1 ◦ λX(Jθ′KµCCTL)

=
(
tr(c′)

)∗ ◦ σZX ◦ (Fζ1 ◦ ζ2)∗ ◦ λX(Jθ′KµCCTL)

=
(
tr(c′)

)∗ ◦ (T (Fζ1 ◦ ζ2))∗ ◦ σFX ◦ λX(Jθ′KµCCTL)

=
(
T (Fζ1 ◦ ζ2) ◦ tr(c′)

)∗ ◦ σFX ◦ λX(Jθ′KµCCTL).

Since T (Fζ1 ◦ ζ2) ◦ tr(c′) = c by Lem. B.8, we finally have

Jι(♠σ♥λθ′)KSFml = c∗ ◦ σFX ◦ λX(Jθ′KµCCTL)

= J♠σ♥λθ′KµCCTL .

Finally, the case θ = µu.�γµ (θ1, . . . , θ|γµ|−1,♠σ♥λu) is already shown in the
proof sketch in §4.2 by using Prop. 4.9 (Prop. B.14).

C Detailed Proof of Prop. 4.11

Proposition C.1. SND satisfies Assum. 4.7 with Γµ = {U} and Γν = {W}.
Thus, SND enjoys the fixpoint characterization (Thm. 4.6).

Proof. Condition 4 is already described in the proof sketch of Prop. 4.11. We
here prove the other conditions of Assum. 4.7.

On condition 1, we already saw the non-empty powerset monad P+ is affine
in Example 2.2.

On condition 2, we have

stX,ZX ◦ 〈idX , tr(c′)〉(x) = {(x, z) | z ∈ tr(c′)(x)},
P+〈ζ1, idZX 〉 ◦ 〈idX , tr(c′)〉(x) = {(ζ1(z), z) | z ∈ tr(c′)(x)}.
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Thus, condition 2 comes from ζ1(z) = x for z ∈ tr(c′)(x). This equality can be
obtained by Lem. B.6. 12 Indeed, we have

{ζ1(z) | z ∈ tr(c′)(x)} = P+(ζ1) ◦ tr(c′)(x)
= ηX(x)

= {x}.

On condition 3, we have to show the diamond ♦ and box modalities � are
Eilenberg-Moore P+-algebra, which is shown in [5]. Note that, whereas the dia-
mond modality is also an Eilenberg-Moore P-algebra,the box modality is not.

On condition 5, we have four connectives ⊥, >, ∨ and ∧. We can easily check
the 0-ary operators ⊥ and > satisfy the diagram eq. (6) in condition 5. We here
prove eq. (5) for the conjunction ∧ case with the diamond modality ♦: other
cases, ∧ with � and ∨ with ♦ and �, are calculated quite similarly. Let t ∈ 2
and S ∈ P+2. By concrete calculation, we have

♦ ◦ P+(∧) ◦ st2,2(t, S) = ♦({t ∧ s | s ∈ S}),
∧ ◦ (id2 × ♦)(t, S) = t ∧ ♦(S).

For every (non-empty) subset S, these two expressions coincide.
On condition 6, as we mentioned after Assum. 4.7, the canonical predicate

lifting Pred(F ) for the polynomial F is bilinear w.r.t. evσ if boolean operators
are so. Thus, condition 6 follows from validity of condition 5 above.

D Proof of Prop. 4.13

Proposition D.1. SqR with its state space (X,PX) for a countable set X satis-
fies the other conditions of Assum. 4.7 than condition 4 with Γµ = {

(
∨( ∧ )

)
}

and Γν = {
(
∧ ( ∨ )

)
} Thus, SqR with countable (X,PX) enjoys the partial

fixpoint characterization (Prop. 4.10).

Proof. On condition 1, we already saw the Giry monad G1 is affine in Exam-
ple 2.2.

On condition 2, by Example 3.5, we have, for x ∈ X,

stX,ZX ◦ 〈idX , tr(c′)〉(x) = δx ×
(
tr(c′)(x)

)
= λS ∈ ΣX×ZX . tr(c′)(x)(Sx),

G1〈ζ1, idZX 〉 ◦ 〈idX , tr(c′)〉(x) = λS ∈ ΣX×ZX . tr(c′)(x)
(
〈ζ1, idZX 〉−1(S)

)
= λS ∈ ΣX×ZX . tr(c′)(x)

(
{z ∈ ZX | (ζ1(z), z) ∈ S}

)
,

where λ is the lambda function notation, ΣX×ZX is the canonical measurable
structure on the product X ×ZX , and Sx is the x-section {z ∈ ZX | (x, z) ∈ S}
of S. We want

tr(c′)(x)(Sx) = tr(c′)(x)
(
{z ∈ ZX | (ζ1(z), z) ∈ S}

)
12 We can use Lem. B.6 here because it depends only on condition 1 and we proved

affine-ness of P+.
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for every measurable set S ∈ ΣX×ZX . Since X is supposed to be countable, we
have a countable sum

{z ∈ ZX | (ζ1(z), z) ∈ S} =
⋃
y∈X
{z ∈ ZX | y = ζ1(z) and (y, z) ∈ S}.

Note that this countable sum is indeed a disjoint sum. By Lem. B.6, we have 13

δx = ηX(x)

= G1(ζ1) ◦ tr(c′)(x)
= λA ∈ ΣX . tr(c′)(x)

(
ζ−11 (A)

)
.

Since {x} ∈ ΣX = PX, we have, for B ∈ ΣZX ,

B ⊆ ζ−11 ({x}) =⇒ tr(c′)(x)(B) = 1,

B * ζ−11 ({x}) =⇒ tr(c′)(x)(B) = 0.

Thus, by sigma-additivity of probability measures, we have

tr(c′)(x)
( ⋃
y∈X
{z ∈ ZX | y = ζ1(z) and (y, z) ∈ S}

)
=
∑
y∈X

tr(c′)(x)
(
{z ∈ ZX | y = ζ1(z) and (y, z) ∈ S}

)
= tr(c′)(x)

(
{z ∈ ZX | x = ζ1(z) and (x, z) ∈ S}

)
.

Furthermore, we have

tr(c′)(x)
(
Sx
)

= tr(c′)(x)
(
{z ∈ ZX | x = ζ1(z) and (x, z) ∈ S} ∪ {z ∈ ZX | x 6= ζ1(z) and (x, z) ∈ S}

)
= tr(c′)(x)

(
{z ∈ ZX | x = ζ1(z) and (x, z) ∈ S}

)
+ tr(c′)(x)

(
{z ∈ ZX | x 6= ζ1(z) and (x, z) ∈ S}

)
= tr(c′)(x)

(
{z ∈ ZX | x = ζ1(z) and (x, z) ∈ S}

)
.

Finally, we obtain

tr(c′)(x)
(
Sx
)

= tr(c′)(x)
(
{z ∈ ZX | x = ζ1(z) and (x, z) ∈ S}

)
= tr(c′)(x)

( ⋃
y∈X
{z ∈ ZX | y = ζ1(z) and (y, z) ∈ S}

)
= tr(c′)(x)

(
{z ∈ ZX | (ζ1(z), z) ∈ S}

)
.

On condition 3, we saw this in §4.3.

13 We can use Lem. B.6 here because it depends only on condition 1 and we proved
affine-ness of G1.
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On condition 5, it suffices to check it for four connectives ⊥, >, ∨ and ∧.
We can easily check the 0-ary operators ⊥ and > satisfy the diagram eq. (6) in
condition 5. We here prove eq. (5) for conjunction ∧ and the modality ≥1 since
the ∨ and >0 case can be seen in the same manner. We want the diagram

(2,P2)× G1(2,P2) G1((2,P2)× (2,P2)) G1(2,P2)

(2,P2)× (2,P2) (2,P2)

st(2,P2),(2,P2)

id(2,P2)×≥1

G1(∧)

≥1

∧

to commute. Each path of this diagram can be calculated as

≥q ◦G1(∧) ◦ st(2,P2),(2,P2)(t, r) =

{
≥1 (r) t = 1

0 t = 0
,

∧ ◦ (id(2,P2)× ≥q)(t, r) = t∧ ≥1 (r)

for t ∈ 2 and r ∈ M(2,P2) ∼= [0, 1]. These coincide since ≥1 (r) means r ≥ 1 by
the definition of the modality ≥1 (Example 2.5).

On condition 6, by the same reason as we mentioned in the proof of Prop. C.1,
condition 6 follows from condition 5, which we proved now.

E Proof of Prop. 5.2

Proposition E.1 (termination and correctness of MCCCTL
S , Prop. 5.2).

For a given CCTL formula ψ, the algorithm MCCCTL
S terminates and returns

JψKSFml.

Proof. We check termination and correctness of MCCCTL
S simultaneously.

Firstly, the encoding ι−1 is terminating by its definition. Correctness of ι−1
is assured in Thm. 4.6.

Next, we check termination and correctness of the procedure CHECK(θ),
i.e., whether CHECK(θ) calculates JθKµCCTL for a given µCCTL formula θ in finite
steps. Among the four cases inside CHECK(θ), the �γ case and the ♠σ♥λ case
are clear, see Def. 4.2.

We move on to the µ case. Firstly, we hypothesize CHECK(θi) = JθiKµCCTL for
every subformula θi (i = 1, . . . , |γµ| − 1). Then the procedure CHECK(µu.�γµ
(θ1, . . . , θ|γµ|−1,♠σ♥λu)) calculates the chain

⊥ v Ψ(⊥) v · · · v Ψn(⊥) v . . . (36)

in Ω, where Ψ represents γµ
(
Jθ1KµCCTL , . . . , Jθ|γµ|−1KµCCTL , J♠σ♥λKµCCTL( )

)
(in ac-

cordance with the notation of Def. 4.2). Indeed, Line 10 initializes U as ⊥ and V
as Ψ(⊥) = Ψ(U) = γ(Jθ1KµCCTL , . . . , Jθ|γµ|−1KµCCTL , J♠σ♥λKµCCTL⊥). 14 Each while
loop (Line 11) first sets U := V (Line 12). Then Line 13 updates V to Ψ(V ).
14 Note that the bottom element is not necessary the same as the empty set.
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Thus, at the end of each iteration of the while loop, the equality U = Ψ(V ) is
an invariant, which means U at the end of n-th iteration is exactly Ψn(⊥).

The Cousot-Cousot theorem [9] assures the chain (eq. (36)) approximates the
least fixpoint of the monotone function Ψ . Since this least fixpoint µΨ coincides
with JθKµCCTL by Def. 4.2, the while loop (Line 11) returns JθKµCCTL if it terminates
(correctness). By the finiteness of X, as imposed in Assum. 5.1, the while loop
(Line 11) indeed terminates (termination): the number of its iteration steps is
bounded by |X|.

The ν case is treated in the same way as the µ case.

F Proof of Prop. 5.4

Proposition F.1 (complexity bound of MCCCTL
S , Prop. 5.4). Let |ψ| be

the number of subformulas in ψ, and N be a constant that bounds the time to
execute the boolean operations used in ψ. The complexity of MCCCTL

S is given by

O
(
|ψ| · |X| ·

(
N + t(σ, λ) + 2 · t(σ, λ) ·N

)
+ |ψ|

)
.

When t(σ, λ) is polynomial to the size |X|, so is the complexity of MCCCTL
S .

Proof. Since the translation ι−1 takes only linear-time to the size of the CCTL
formula ψ, the total complexity of Algo. 1 is O(|ψ|+C) where C is the complexity
of CHECK(ι−1ψ) in Algo. 1. We decide this C.

– The �γ(θ1, . . . , θ|γ|) case: we check whether x ∈ γ(Jθ1KµCCTL , . . . , Jθ|γ|KµCCTL)
for every x ∈ X. By the definition of the constant N , the time to solve this
problem is bounded by |X| ·N .

– The ♠σ♥λθ′ case: we check whether x ∈ J♠σ♥λK(Jθ′KµCCTL) for every x ∈ X.
By Def. 5.3, the time to solve this problem is bounded by |X| · t(σ, λ).

– The µu.�γµ (θ1, . . . , θ|γµ|−1,♠σ♥λu) case: we check whether

x ∈ µu.γ(Jθ1KµCCTL , . . . , Jθ|γµ|−1KµCCTL , J♠σ♥λK(u)) (37)

for every x ∈ X. In each iteration of the while loop (Line 11), we check
whether x ∈ γ(Jθ1KµCCTL , . . . , Jθ|γµ|−1KµCCTL , J♠σ♥λK(Q)) for every x ∈ X,
where Q is some Ω-predicate. Thus, the time to compute each iteration of
the while loop is bounded by |X| ·t(σ, λ) ·N . Furthermore, the number of the
while loop iterations (Line 11) is bounded by |X| since the Cousot-Cousot
theorem and our finiteness assumption assure we obtain the least fixpoint
with at most |X| steps, as we saw in the proof of Prop. E.1. Hence, the time
to decide whether eq. (37) for every x ∈ X is bounded by |X| · t(σ, λ) ·N .

– The νu.�γν (θ1, . . . , θ|γν |−1,♠σ♥λu) case is the same as the µ case.

Therefore, each call of the switch has the complexity

O
(
|X| ·N + |X| · t(σ, λ) + |X| · t(σ, λ) ·N + |X| · t(σ, λ) ·N

)
= O

(
|X| ·

(
N + t(σ, λ) + 2 · t(σ, λ) ·N

))
.
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Thus, the complexity C of CHECK(ι−1ψ) is

O
(
|ψ| · |X| ·

(
N + t(σ, λ) + 2 · t(σ, λ) ·N

))
.

Finally, we conclude the total complexity of MCCCTL
S as

O(C + |ψ|) = O
(
|ψ| · |X| ·

(
N + t(σ, λ) + 2 · t(σ, λ) ·N

)
+ |ψ|

)
.
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