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Abstract. Algorithms for partition refinement are actively studied for
a variety of systems, often with the optimisation called Hopcroft’s trick.
However, the low-level description of those algorithms in the literature of-
ten obscures the essence of Hopcroft’s trick. Our contribution is twofold.
Firstly, we present a novel formulation of Hopcroft’s trick in terms of
general trees with weights. This clean and explicit formulation—we call
it Hopcroft’s inequality—is crucially used in our second contribution,
namely a general partition refinement algorithm that is functor-generic
(i.e. it works for a variety of systems such as (non-)deterministic au-
tomata and Markov chains). Here we build on recent works on coalge-
braic partition refinement but depart from them with the use of fibra-
tions. In particular, our fibrational notion of R-partitioning exposes a
concrete tree structure to which Hopcroft’s inequality readily applies. It
is notable that our fibrational framework accommodates such algorithmic
analysis on the categorical level of abstraction.

Keywords: Partition refinement · Category theory · Coalgebra · Fibra-
tion · Tree algorithm

1 Introduction

Partition refinement refers to a class of algorithms that computes behavioural
equivalence of various types of systems—such as the language equivalence for
deterministic finite automata (DFAs), bisimilarity for labelled transition systems
(LTSs) and Markov chains, etc.—by a fixed-point iteration. Such algorithms also
yield quotients of state spaces, making systems smaller and thus easier to analyse
e.g. by model checking.

Since its original introduction by Moore [20] for DFAs, partition refinement
has been actively studied for enhanced performance and generality. On the per-
formance side, Hopcroft [11] introduced what is now called Hopcroft’s trick that
greatly improves the asymptotic complexity. The original paper [11] is famously
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hard to crack; works such as [6, 16] present its reformulation, again focusing on
DFAs. On the generality side, partition refinement for systems other than DFAs
has been pursued, such as LTSs [15, 24], probabilistic transition systems with
non-determinism [7], weighted automata [18], and weighted tree automata [9,10].
Hopcroft’s trick is used in many of these works for enhanced performance, too.

Such a variety of target systems is uniformly addressed by a recent body of
work on coalgebraic partition refinement [4, 5, 14, 26]. Here, a target system is
identified with a categorical construct called coalgebra c : C → FC (see e.g. [13]),
where C represents the state space, the functor F specifies the type of the sys-
tem, and c represents the dynamics. By changing the functor F as a parameter,
the theory accommodates many different systems such as DFAs and weighted
automata. The coalgebraic partition refinement algorithms in [4, 5, 14, 26] are
functor-generic: they apply uniformly to such a variety of systems.

The current work is inspired by [14] which successfully exploits Hopcroft’s
trick for generic coalgebraic partition refinement. In [14], their coalgebraic algo-
rithm is described in parallel with its set-theoretic (or even binary-level) concrete
representations, letting the latter accommodate Hopcroft’s trick. Their experi-
mental results witnessed its superior performance, beating some existing tools
that are specialised in a single type of systems.

However, the use of Hopcroft’s trick in [14] is formulated in low-level set-
theoretic terms, which seems to obscure the essence of the algorithm as well
as the optimisation by Hopcroft’s trick, much like in the original paper [11].
Therefore, in this paper, we aim at 1) an explicit formulation of Hopcroft’s trick,
and 2) a categorical partition refinement algorithm that exposes an explicit data
structure to which Hopcroft’s trick applies.

We achieve these two goals in this paper: 1) an explicit formulation that we
call Hopcroft’s inequality, and 2) a categorical algorithm that uses a fibration.
Here is an overview.
Hopcroft’s Inequality We identify Hopcroft’s inequality (Thm. 2.9) as the
essence of Hopcroft’s trick. Working on general trees with a general notion of
vertex weight, it uses the classification of edges into heavy and light ones and
bounds a sum of weights in terms of (only) the root and leaf weights. This
inequality can be used to bound the complexity of many tree generation algo-
rithms, including those for partition refinement.

This general theory can accommodate different weights. We exploit this gen-
erality to systematically derive partition refinement algorithms with different
complexities (§6.2).
A Fibrational Partition Refinement Algorithm Hopcroft’s inequality does not
directly apply to the existing coalgebraic partition refinement algorithms [4, 5,
14, 26] since the latter do not explicitly present a suitable tree structure. To
address this challenge, we found the categorical language of fibrations [12] to be
a convenient vehicle: it allows us to speak about the relationship between 1) an
equivalence relation (an object in a fibre category) and 2) a partitioning of a state
space (a mono-sink in the base category). The outcome is a partition refinement
algorithm that is both abstract (it is functor-generic and applies to a variety of
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systems) and concrete (it explicitly builds a tree to which Hopcroft’s inequality
applies.) Our development relies on the fibrational theory of bisimilarity [8, 17];
yet ours is the first fibrational partition refinement algorithm.

More specifically, in a fibration p : E→ C, an equivalence relation R on a set
X is identified with an object R ∈ EX in the fibre over X (consider the well-
known fibration EqRel→ Set of sets and equivalence relations over them). We
introduce a categorical notion of R-partitioning ; it allows R ∈ EX to induce
a mono-sink (i.e. a family of monomorphisms) {κi : Ci � C}i∈I . The latter is
identified with the set of R-equivalence classes.

Fig. 1 illustrates one iteration of our fibrational partition refinement algo-
rithm fPRH (Algo. 2). In the last step (Fig. 1c), the object C01 is devided
into three parts C010, C011 and C012 along (c ◦ κ)∗FR. We call the mono-sink
{C01i � C01}i∈{0,1,2} the (c ◦ κ)∗FR-partitioning of C01. In this manner, a
tree structure explicitly emerges in the base category C. Hopcroft’s inequality
directly applies to this tree, allowing us to systematically present the Hopcroft-
type optimisation on the categorical level of abstraction.

We note that, at this moment, our fibrational framework (with a fibration
p : E→ C) has only one example, namely the fibration EqRel→ Set of equiva-
lence relations over sets. While it is certainly desirable to have other examples,
their absence does not harm the value of our fibrational framework: we do not
use fibrations for additional generality (beyond functor-genericity);4 we use them
to explicate trees in the base category (cf. Fig. 1).
Contributions Summarising, our main technical contributions are as follows.

– Hopcroft’s inequality that explicates the essence of Hopcroft’s trick.
– A fibrational notion of R-partitioning that turns a fibre object into a mono-

sink (§4).
– A fibrational partition refinement algorithm fPRH that combines the above

two (§6.1).
– Functor-generic partition refinement algorithms fPRH-ER

wC
, fPRH-ER

wP
, fPRH-ER

wR
,

obtained as instances of fPRH but using different weights in Hopcroft’s in-
equality. The three achieve slightly different, yet comparable to the best
known, complexity bounds (§6.2).

2 Hopcroft’s Inequality

We present our first contribution, Hopcroft’s inequality. It is a novel formalisation
of Hopcroft’s trick in terms of rooted trees. It also generalises the trick, accom-
modating arbitrary weights (Def. 2.2) besides the particular one to count the
number of items in classes that is typically and widely used (e.g. [11,14,15,24]).

Notation 2.1. Let T be a rooted tree. We denote the set of leaves by L(T ), the
set of vertices by V (T ), the set of edges in the path from v to u by path(v, u),
4 In this sense, we can say that our use of fibrations is similar to some recent usages
of string diagrams in specific monoidal categories, such as in [2, 22].
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C
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C1

C00

C01

R

(a) Before the iteration

C
C0

C1

C00

C01

(c ◦ κ)∗FR c∗FR

(b) Refine R and restrict
to C01

C
C0

C1

C00

C01

C010

C011

C012

(c ◦ κ)∗FR

(c) Refine C01 and expand
the tree

Fig. 1: An iteration in our algorithm fPRH (Algo. 2). Fig. 1a shows an equivalence
relation R over C, and the corresponding partitioning C00, C01, C1 � C of the
state space C. (The history of refinement is recorded as a tree; this is important
for complexity analysis.) In Fig. 1b, the equivalence relation R is refined into
c∗FR along the one-step transition of the system dynamics c, and is further
restricted to the partition C01. In Fig. 1c, the resulting equivalence relation
(c ◦ κ)∗FR over C01 yields a partitioning of C01, expanding the tree.

the set of children of v ∈ V (T ) by ch(v), and the subtree whose root is v ∈ V (T )
by tr(v).

Definition 2.2 (weight function). Let T be a rooted finite tree. A weight func-
tion of T is a map w : V (T ) → N satisfying

∑
u∈ch(v) w(u) ≤ w(v) for each

v ∈ V (T ). We call a weight function tight if
∑
u∈ch(v) w(u) = w(v) for all

v ∈ V (T ) \ L(T ).

Definition 2.3 (heavy child choice). For a weight function w of a tree T , a
heavy child choice (hcc for short) is a map h : V (T ) \ L(T ) → V (T ) satisfying
h(v) ∈ ch(v) and w(h(v)) = maxu∈ch(v) w(u) for every v ∈ V (T ) \ L(T ). We
write h(v) as hv and call the vertex hv a heavy child of v, and a non-heavy child
a light child. We define lchh(v) = ch(v) \ {hv}. An edge (v, u) is a light edge if
u ∈ lchh(v). We define lpath(v, u) = {e ∈ path(v, u) | e is a light edge}.

Note that a heavy child choice always exists but is not unique in general.
Examples are in Fig. 2; the weight on the left is not tight while the right one

is tight.

36

14 14 7

5 7 5 2 3 7

2 4

36

15 14 7

5 10 9 2 3 7

2 5

Fig. 2: Examples of rooted trees, each with a weight function and an hcc. The
heavy children are indicated by thick edges. Thin edges are light edges.

In the rest of this section, our technical development is towards Hopcroft’s
inequality in Thm. 2.9. It gives an upper bound for a sum of weights—we only
count those for light children, which is the core of the optimisation in Hopcroft’s
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partition refinement algorithm [11]—in terms of weights of the root and the
leaves. This upper bound makes no reference to the tree’s height or internal
weights, making it useful for complexity analysis of tree generation algorithms.

The following lemma crucially relies on the definition of weight function.

Lemma 2.4. Let T be a finite tree with a root r, w be a weight function of
T , and S be an arbitrary set of edges of T . Then

∑
v∈V (T )

∑
u∈ch(v)
(v,u) 6∈S

w(u) ≥∑
l∈L(T )

∣∣path(r, l) \ S∣∣ · w(l) holds. The equality holds when w is tight.

Lem. 2.5 is our first key lemma; we use Lem. 2.4 in its proof. It relates the
sum of weights of the light children—for which we aim to give an upper bound
in Thm. 2.9—with the leaf weights and (roughly) the tree height.

Lemma 2.5. Let T be a finite tree with a root r, w be a weight function of T ,
and h be an hcc for w. Then the following inequality holds. The equality holds
when w is tight.∑

v∈V (T )

∑
u∈lchh(v) w(u) ≥

∑
l∈L(T )

∣∣lpath(r, l)∣∣ · w(l). (1)

For the right tree in Fig. 2, the left-hand side of (1) is (14+7)+5+(2+3)+0+
2 = 33, and the right-hand side is 1×5+0×10+1×9+2×2+2×3+2×2+1×5 = 33.

The inequality in (1) is the opposite of what we want (namely an upper
bound for the left-hand side). We thus force an equality using tightening.

Definition 2.6 (tightening). Let w be a weight function of a rooted finite tree
T , and h be its heavy child choice. The tightening w′ : V (T ) → N of w along h
is defined recursively by

w′(u) =


w(u) if u is the root of T
w′(v)−

∑
u′∈lchh(v) w(u

′) if u = hv for the parent v of u
w(u) otherwise.

In Fig. 2, the weight function of the right tree is a tightening of that of the
left tree. We observe that tightening maintains a heavy child choice:

Lemma 2.7. Let T be a rooted finite tree, w be a weight function of T , h be an
hcc for w, and w′ be the tightening of w along h. The following hold.

1. The map w′ is a tight weight function of T .
2. The map h is also a heavy child choice for w′.
3. For the root r, w(r) = w′(r) holds, and for each v ∈ V (T ), w(v) ≤ w′(v)

holds.

Our second key lemma towards Thm. 2.9 is as follows, bounding | lpath(r, v)|
that occurs on the right in (1). Its proof is by what is commonly called Hopcroft’s
trick [1,11]: it observes that, along a light edge, weights decay at least by 1/2.

Lemma 2.8. Let T be a finite tree with a root r, w be a weight of T , and h be
an hcc for w. For each vertex v ∈ V (T ) with w(v) 6= 0, the following inequality
holds: | lpath(r, v)| ≤ log2 w(r)− log2 w(v).



6 T. Sanada et al.

We combine Lem. 2.8 and Lem. 2.5 (its equality version; we can use it via
tightening) to obtain Hopcroft’s inequality. It bounds a sum of weights by the
root and leaf weights.
Theorem 2.9 (Hopcroft’s inequality). Let T be a finite tree with root r,
w be a weight function of T , and h be a heavy child choice for w. The following
inequality holds.∑

v∈V (T )

∑
u∈lchh(v)

w(u) ≤ w(r) log2 w(r)−
∑

l∈L(T )
w(l) 6=0

w(l) log2 w(l) (2)

For complexity analysis, we use Hopcroft’s inequality in the following form.
Assume that a tree generation algorithm takes t(v) time to generate all the
children (both heavy and light) of v. If there exists K such that t(v) is bounded
by K times the sum of all light children, then the time to generate the whole
tree is bounded by Kw(r) log2 w(r).

Corollary 2.10. Let T be a rooted finite tree with root r, w be a weight function
of T , and h be a heavy child choice for w. If a map t : V (T ) → N satisfies
that there exists a constant K ∈ N such that t(v) ≤ K

∑
u∈lchh(v) w(u) for

every v ∈ V (T ), then the sum of t(v) is bounded by Kw(r) log2 w(r), that is∑
v∈V (T ) t(v) ≤ Kw(r) log2 w(r).

Remark 2.11. Further adaptations of Hopcroft’s trick are pursued in the liter-
ature, e.g. in [25], where the notion of heavy child choice is relaxed with an extra
parameter α ∈ [1/2, 1). Our theory can easily be extended to accommodate α, in
which case the above description corresponds to the special case with α = 1/2.
Details are deferred to another venue.

3 Categorical Preliminaries

The rest of the paper is about our second contribution, namely a functor-generic
partition refinement (PR) algorithm optimised by an explicit use of Hopcroft’s
inequality (Thm. 2.9). It is given by our novel formulation of coalgebraic PR
algorithms in fibrational terms. Here we shall review some necessary categorical
preliminaries.

We use categorical formalisation of intersections and unions.

Definition 3.1. For monomorphisms m : A � C and n : B � C in C, the
intersection m ∩ n : A ∩ B � C and the union m ∪ n : A ∪ B � C are defined
by the pullback and pushout, respectively:

A ∩B B

A C

π1

π2

n
m

and
A ∩B B

A A ∪B
π1

π2

.

We saym : A� C andm′ : A′� C are equivalent if there is an isomorphism
φ : A → A′ such that m = m′ ◦ φ. The set Sub(C)C of equivalence classes of
monomorphisms whose codomains are C forms a lattice, assuming enough limits
and colimits.
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3.1 Fibrations

A fibration p : E → C is a functor satisfying some axioms. When p(R) = C
for an object R ∈ E and an object C ∈ C, we see that R equips C with some
information, e.g. a predicate, a relation, a topology, etc. The main example in
this paper is the fibration EqRel→ Set where C is a set and R is an equivalence
relation over C.

Fibrational constructs that are the most relevant to us are the inverse image
f∗(R′) and the direct image f∗(R) along a morphism f : S → S′ in C. In the
case of EqRel→ Set, these are computed as follows.

S S′
f

R′
f∗(R′) =
{(x, y) | (fx, fy) ∈ R′}

f∗

S S′
f

R
f∗(R) =
{(fx, fy) | (x, y) ∈ R}

f∗

In what follows we introduce some basics of fibrations; they formalise the
intuition above. For details, see e.g. [12].

Definition 3.2 (fibration). Let p : E→ C be a functor. A morphism f : P → R
in E is Cartesian if for any g : Q→ R in E with pg = pf ◦v for some v : pQ→ pP ,
there exists a unique h : Q → P in E above v (i.e. ph = v) with f ◦ h = g. The
functor p is a fibration if for each R ∈ E and u : C → pR in C, there are an
object u∗R and a Cartesian morphism u̇(R) : u∗R→ R in E. See below.

E

C

p

Q

u∗R R

g

u̇R
h

B

C D

u ◦ v

u
v

The category E is called the total category and the category C is called the
base category of the fibration. For an object C ∈ C, the objects in E above C
form a category EC , called the fibre category above C. The fibre category EC is
the category of “equivalence relations” on C.

Definition 3.3 (fibre category). Let p : E → C be a fibration and C ∈ C. The
fibre category EC over C is the subcategory of E whose objects are defined by
ob(EC) = {R ∈ E | pR = C}, and morphisms are defined by EC(Q,R) = {f ∈
E(Q,R) | pf = idC} for Q,R ∈ ob(EC).

Example 3.4 (EqRel → Set is a fibration). Let EqRel be the category of
equivalence relations. The objects of EqRel are pairs (S,R) of a set S and an
equivalence relation R on S. A morphism f : (S,R) → (S′, R′) in EqRel is a
function f : S → S′ satisfying (f(x), f(y)) ∈ R′ for all (x, y) ∈ R. We sometimes
write just R for (S,R) when no confusion arises. The functor p : EqRel→ Set
defined by p(S,R) = S is a fibration.
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For a morphism u : C → D in the base category of a fibration, the map
u∗ : ob(ED) → ob(EC) extends to a functor u∗ : ED → EC between fibre cate-
gories. We call the functor u∗ : ED → EC an inverse image functor.

Given a fibration E→ C and an endofunctor F : C→ C on the base category,
if R ∈ E is above C ∈ C, we would like to get an object in E above FC. A lifting
of F specifies the choice of an object above FC.

Definition 3.5 (lifting, fibred lifting). Let p : E→ C be a fibration and F : C→
C be a functor. A lifting of F is a functor F : E→ E with p◦F = F ◦p. A functor
F : E → E is a fibred lifting of F if F is a lifting of F and preserves Cartesian
morphisms.

When F : E → E is a fibred lifting of F : C → C, for f : C → D in C and
R ∈ ED, we have F (f∗R) = (Ff)∗(FR) in EFC . An important example of a
lifting is a relation lifting.

Definition 3.6 (relation lifting [13]). Let F : Set → Set be a weak pullback
preserving functor. We define a lifting Rel(F ) : EqRel → EqRel of F along
the fibration p : EqRel → Set, called the relation lifting of F , as follows. For
an object (C,R) ∈ EqRel, there is the inclusion 〈r1, r2〉 : R � C × C. We
define the relation lifting on the object R by Rel(F )(R) = Im〈Fr1, F r2〉, where
Im〈Fr1, F r2〉 is the image factorisation. By the assumption that F preserves
weak pullbacks, we can show that Rel(F )(R) is an equivalence relation. Rel(F )
can be extended to a functor.

FR FC × FC

Im〈Fr1, F r2〉
= Rel(F )(R)

〈Fr1, F r2〉

In this paper, we deal with a restricted class of fibrations, called CLatu-
fibrations.

Definition 3.7 (CLatu-fibration). A fibration p : E→ C is aCLatu-fibration if
each fibre EC is a complete lattice and each inverse image functor u∗ : ED → EC
preserves meets u.

For a CLatu-fibration, there always exists the left adjoint u∗ : EC → ED
to an inverse image functor u∗, as is well-known (cf. Freyd’s adjoint functor
theorem). The functor u∗ is defined by u∗(P ) =

d
{R ∈ ED | P v u∗(R)} on

objects. We call u∗ a direct image functor.

Example 3.8 (EqRel→ Set is a CLatu-fibration). The functor p : EqRel→
Set from Example 3.4 is a CLatu-fibration. We describe the inverse image
functor f∗ and the direct image functor f∗ for a function f : S → S′. For an
equivalence relation R′ on S′, the inverse image f∗(R′) is the equivalence relation
{(x, y) ∈ S × S | (f(x), f(y)) ∈ R′} on S. For an equivalence relation R on S,
the direct image f∗(R) is the equivalence closure of the relation

{
(f(x), f(y)) ∈

S′ × S′
∣∣ (x, y) ∈ R}.
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3.2 Coalgebras and Bisimulations

Coalgebras are widely used as a generalisation of state-based systems [13,23].

Definition 3.9 (F -coalgebra). Let C be a category and F : C → C be an
endofunctor. An F -coalgebra is a pair (C, c) of an object C ∈ C and a morphism
c : C → FC.

For an F -coalgebra c : C → FC, F specifies the type of the system, the
carrier object C represents the “set of states” of the system, and c represents the
transitions in the system. When C = Set, for an F -coalgebra c : C → FC and a
state x ∈ C, the element c(x) ∈ FC represents properties (e.g. acceptance) and
successors of x.

A major benefit of coalgebras is that their theory is functor-generic: by chang-
ing a functor F , the same theory uniformly applies to a vast variety of systems.

Example 3.10. We describe some F -coalgebras for functors F on Set.

1. For the powerset functor P, a P-coalgebra c : C → PC is a Kripke frame.
For a state x ∈ C, c(x) ∈ PC is the set of successors of x.

2. Let Σ be an alphabet and NΣ = 2×(P−)Σ . An NΣ-coalgebra c : C → NΣC
is a non-deterministic automaton (NA). For a state x ∈ C, let (b, t) = c(x) ∈
2×(PC)Σ . The state x is accepting iff b = 1, and there is a transition x a−→ y
in the NA iff y ∈ t(a).

3. The distribution functor D is defined on a set X to be DX = {d : X →
[0, 1] | {x ∈ X | f(x) 6= 0} is finite and

∑
x∈X d(x) = 1}. A D-coalgebra

c : C → DC is a Markov chain. For a state x, c(x) ∈ DC is a probability
distribution C → [0, 1], which represents the probabilities of transitions to
successor states of x.

We are interested in how similar two states of a state-transition system are.
We consider two states to be similar if one state can mimic the transitions of
the other. Bisimilarity by Park [21] and Milner [19] is a notion that captures
such behaviour of states. Hermida and Jacobs [8] formulated bisimilarity as a
coinductive relation on a coalgebra, using a fibration.

Definition 3.11 (bisimulations and the bisimilarity). Let p : E → C be a
CLatu-fibration, F : C → C be a functor, c : C → FC be an F -coalgebra and
F be a lifting of F . An (F, F )-bisimulation is a c∗ ◦ F -coalgebra in EC , that is
an object R ∈ EC with R v c∗(F (R)) since a morphism in EC is a relation (v).
By the Knaster–Tarski theorem, there exists the greatest (F, F )-bisimulation
ν(c∗ ◦F ) with respect to the order of EC , and it is called the (F, F )-bisimilarity.

In the above definition, the choice of F determines a notion of bisimulation.
The relation lifting Rel(F ) (Def. 3.6) is often used as a lifting of F . For all the
functors we consider, the bisimilarity wrt. Rel(F ) coincides with the behavioural
equivalence, another well-known notion of bisimilarity [13, §4.5].
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Example 3.12 ((F,Rel(F ))-bisimilarities). We illustrate (F,Rel(F ))-bisimilarity
(also called logical F -bisimilarity [13]) for F in Example 3.10. Let C ∈ Set and
R ∈ EqRelC .

1. (F = P). The (P,Rel(P))-bisimilarity ν(c∗ ◦ Rel(P)) for a P-coalgebra
c : C → PC is the maximum relation R on C such that if (x, y) ∈ R then
– for every x′ ∈ c(x), there is y′ ∈ c(y) such that (x′, y′) ∈ R, and
– for every y′ ∈ c(y), there is x′ ∈ c(x) such that (x′, y′) ∈ R.

2. (F = NΣ). The (NΣ ,Rel(NΣ))-bisimilarity ν(c∗ ◦ Rel(NΣ)) for an NΣ-
coalgebra c : C → NΣC is the ordinary bisimilarity for the NA c, that is the
maximum relation R on C such that if (x, y) ∈ R then π1(c(x)) = π1(c(y))
and
– for each a ∈ Σ, x′ ∈ π2(c(x))(a), there is y′ ∈ π2(c(y))(a) such that

(x′, y′) ∈ R, and
– for each a ∈ Σ and y′ ∈ π2(c(y))(a), there is x′ ∈ π2(c(x))(a) such that

(x′, y′) ∈ R.
3. (F = D) [3]. The (D,Rel(D))-bisimilarity ν(c∗ ◦ Rel(D)) for a D-coalgebra
c : C → DC is the maximum relation R such that if (x, y) ∈ R then∑
z∈K c(x)(z) =

∑
z∈K c(y)(z) for every equivalence class K ⊆ C of R.

4 Fibrational Partitioning

We introduce the notion of fibrational partitioning, one that is central to our
algorithm that grows a tree using fibre objects (cf. Fig. 1).

Given an “equivalence relation” R over C—identified with an object R ∈ EC
over C ∈ C in a suitable fibration p : E → C—a fibrational R-partitioning is a
mono-sink, shown on the right, that is subject to certain axioms. The notion al-
lows us to explicate equivalence classes (namely {Ci}i) in the abstract fibrational
language.

E

C

p

R

C0

...
Cn

C

κ0

κn

Definition 4.1 (R-partitioning). Let C be a category with pullbacks and an
initial object 0, and p : E→ C be a CLatu-fibration. Let C ∈ C and R ∈ EC . An
R-partitioning is a mono-sink (i.e. a family of monomorphisms) {κi : Ci� C}i∈I
that satisfies:

1. κ∗i (R) = >Ci for all i ∈ I,
2.
⊔
i∈I(κi)∗(>Ci) = R, and

3. Ci 6∼= 0 and Ci ∩ Cj ∼= 0 for each i, j ∈ I with i 6= j.

We say a CLatu-fibration p admits partitioning if (1) for each C ∈ C and
R ∈ EC , there is an R-partitioning; and moreover, (2) for each C ∈ C, R,R′ ∈
EC such that R′ v R, and each R-partitioning {κi : Ci � C}i∈I , we have⊔
i∈I(κi)∗(κ

∗
iR
′) = R′.
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(Beck–Chevalley)

A ∩B B

A C

m

n

λ
κ

=⇒
EA∩B EB

EA EC
m∗

n∗

λ∗

κ∗

(modularity)

EA × EB EC × EC EC

EB × EB EB

κ∗×λ∗ t

λ∗×λ∗ λ∗

t

Fig. 3: Conditions for Assum. 5.1.

Cond. 3 asserts that the components Ci are nontrivial and disjoint. Cond. 1
says the partitioning {Ci}i is not too coarse—the original equivalence R, when
restricted to Ci, should relate all pairs of elements in Ci. Conversely, Cond. 2
means that {Ci}i is not too fine—if it were finer than R, then the relation⊔
i∈I(κi)∗(>Ci) over C would be finer than R. See the concrete description of

(κi)∗ in Example 3.8.

Example 4.2 (EqRel→ Set admits partitioning). EqRel→ Set admits par-
titioning. Indeed, given an equivalence relation R ∈ EqRelC over C, the mono-
sink {κS : S � C}S∈C/R, where S ∈ C/R is naturally identified with a subset
of C, is an R-partitioning. Cond. 1–3 are easily verified following Example 3.8.

An R-partitioning is not necessarily unique. This happens when R ∈ EqRelC
has singleton equivalence classes. Let A ⊆ C be an arbitrary subset such that
each x ∈ A composes a singleton R-equivalence class. Then {κ′S : S � C}S∈I ,
where I = (C/R) \

{
{x}

∣∣x ∈ A}, is also an R-partitioning. With this mono-
sink (that is “narrower” than the original {κS}S∈C/R), Cond. 2 is satisfied since
the equivalence closure operation included in the direct images (κi)∗(>Ci) (see
Example 3.8) compensates the absence of x ∈ A.

The fibration EqRel → Set is our leading example, and unfortunately, the
only example that we know admits partitioning. There are many other examples
of CLatu-fibrations (see [17]), but they fail to admit partitioning, typically due
to the failure of Cond. 2 of Def. 4.1. This absence of examples does not harm the
value of our fibrational framework: our goal is to explicate categorical essences
of partition refinement; and we do not aim at new instances via categorical
abstraction (although such are certainly desirable).

5 The Naive Fibrational Algorithm fPRnaive

We introduce a naive fibrational partition refinement algorithm, called fPRnaive,
as a preparation step to our main algorithm fPRH (Algo. 2).

In what follows, a prefix-closed set T ⊆ N∗ (where N∗ is the set of strings
over N) is identified with a rooted tree. We denote the leaves of T by L(T ).

We introduce further conditions that make fibrations “compatible” with par-
titioning. It is easy to see that EqRel → Set satisfies the conditions on p in
Assum. 5.1.

Assumption 5.1. Assume a CLatu-fibration p : E → C that satisfies the fol-
lowing conditions.
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1. For each C ∈ C, the lattice Sub(C)C of subobjects of C in C is distributive.
2. (Beck–Chevalley) For every pullback diagram along monomorphisms in C,

shown in the first diagram in Fig. 3, the induced diagram, the second in
Fig. 3, commutes.

3. For any monomorphisms κ : A � C and λ : B � C, the third diagram in
Fig. 3 is a fork, where the following diagram is a fork if h1◦g1◦f = h2◦g2◦f .

W X Y1

Y2 Z

f g1

g2 h1
h2

Definition 5.2. Let p : E→ C be a CLatu-fibration that satisfies Assum. 5.1,
F : C→ C be a functor, and F : E→ E be its lifting along p (Def. 3.5). Algo. 1
shows our naive fibrational partition refinement algorithm. Given a coalgebra
c : C → FC, it computes a ν(c∗F )-partitioning of C, i.e. modulo the (F, F )-
bisimilarity of c (Def. 3.11).

Algorithm 1 The naive fibrational partition refinement algorithm fPRnaive.
Input: A coalgebra c : C → FC in C.
Output: A mono-sink {κi : Ci � C}i∈I for some I.
1: T := {ε} ⊆ N∗; Cε := C; κε := idC : Cε � C; R := >C . initialisation
2: while c∗FR 6= R do . the main loop
3: R := c∗FR; L := L(T )
4: for σ ∈ L do
5: Take a κ∗σ(R)-partitioning {λσ,k : Cσk � Cσ}k∈{0,...,nσ} of Cσ
6: for k = 0, . . . , nσ do κσk := κσ ◦ λσ,k : Cσk � C

7: T := T ∪ {σ0, . . . , σnσ}
8: return {κσ : Cσ � C}σ∈L(T )

CCε CCε

C0

C1

CCε

C0

C1

C00

C01

C10

· · ·

Fig. 4: The R-partitioning gets finer as the algorithm runs.
Algo. 1 starts with R = >C ∈ EC and a singleton family of a monomorphism

{κε : Cε � C}. With each iteration, the object R on C gets smaller and closer
to ν(c∗F ) and R-partitioning {κσ : Cσ � C}σ gets finer (see Fig. 4). When the
algorithm terminates, R is equal to ν(c∗F ) and a ν(c∗F )-partitioning is returned.

Combining the loop invariant (Lem. 5.3) and termination (Lem. 5.4), we can
prove the correctness of the naive algorithm.

Lemma 5.3 (loop invariant). At the beginning of each iteration of the main
loop, the following hold.

1. The mono-sink {κσ : Cσ � C}σ∈L(T ) is an R-partitioning.
2. ν(c∗F ) v R.
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Lemma 5.4 (termination). If EC is a well-founded lattice, Algo. 1 termi-
nates.

Proposition 5.5 (correctness). If EC is well-founded, then Algo. 1 termi-
nates and returns ν(c∗F )-partitioning {κ : Ci� C}i∈I .

6 Optimised Algorithms with Hopcroft’s Inequality

Recall that the naive algorithm grows a tree uniformly so that every leaf has the
same depth (see Fig. 4; note that, even if Cσ is fine enough, we extend the node
by a trivial partitioning). By selecting leaves in a smart way and generating a
tree selectively, the time cost of each iteration can be reduced, so that Hopcroft’s
inequality is applicable.

In §6.1, we present a functor-generic and fibrational algorithm enhanced with
the Hopcroft-type optimisation, calling it fPRH. We use Hopcroft’s inequality
(§2) for complexity analysis.

In §6.2 we instantiate fPRH to the fibration EqRel → Set, obtaining three
concrete (yet functor-generic) algorithms fPRH-ER

wC
, fPRH-ER

wP
, fPRH-ER

wR
that use

different weight functions. fPRH-ER
wC

is essentially the algorithm in [14]. The other
two (fPRH-ER

wP
, fPRH-ER

wR
) use the weight functions from the works [6, 11, 16] on

DFA partition refinement. The three algorithms exhibit slightly different asymp-
totic complexities.

6.1 A Fibrational Algorithm fPRH Enhanced by Hopcroft’s
Inequality

We fix a CLatu-fibration p : E → C, functors F : C → C and F : E → E, an
F -coalgebra c : C → FC, and a map w : ob(Sub(C)C) → N (which we use for
weights). We write w(C ′) for w(λ : C ′� C) when no confusion arises.

The following conditions clarify which properties of EqRel → Set are nec-
essary to make our optimised fibrational algorithm fPRH work: the last one
(Assum. 6.1.10) is for complexity analysis; all the other ones are for correctness.

Assumption 6.1. 1. C has pullbacks, pushouts along monos, and an initial
object 0.

2. The fibre category E0 above an initial object 0 is trivial, that is >0 = ⊥0.
3. F is a fibred lifting of F along p.
4. F : C→ C preserves monomorphisms whose codomain is not 0.
5. The fibration p admits partitioning.
6. The fibration p : E→ C satisfies the three conditions in Assum. 5.1.
7. The fibre category EC is a well-founded lattice.
8. If C ′ � C and R ∈ EC′ , every R-partitioning {λk : Dk � C ′}k∈K is finite

(|K| <∞).
9. If κ : A� C and λ : B � C are monomorphisms and A ∩ B ∼= 0, then the

functor EA × EB EC × EC EC
κ∗×λ∗ t is injective on objects.
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Table 1: Correspondence between constructs in fPRH
(F,F ),w

and the theory in §2

Constructs in Algo. 2 Notions in §2

The tree of subobjects {Cσ}σ∈J of C, cf. Fig. 5 A tree T = (V,E), cf. Fig. 2
A set {Cσ}σ∈J of objects in C A set V of vertices
A set {κσ,k : Cσk � Cσ}σk∈J of monomorphisms A set E of edges
A map w : ob(Sub(C)C)→ N with Assum. 6.1.10 A weight function w : V → N (Def. 2.2)
A choice of k0 made in Line 10 of Algo. 2 An hcc h : V \ L(T )→ V (Def. 2.3)
The complexity result of Prop. 6.9 The inequality of Cor. 2.10

10. For C ′� C,R ∈ EC′ , andR-partitioning {κi : Ci� C ′} of C ′,
∑n
i=1 w(Ci) ≤

w(C ′).

Assum. 6.1.3 is not overly restrictive. Indeed, the following functors on Set
have a fibred lifting. The functors described in Example 3.10 are examples of
the functor defined by (3).

Proposition 6.2. Consider the endofunctors on Set defined by the BNF below.

F ::= Id | A |
∐
b∈B Fb |

∏
b∈B Fb | PF | DF where A and B are sets. (3)

The relation lifting Rel(F ) : EqRel→ EqRel of F (Def. 3.6) is fibred.

Proposition 6.3. The fibration p : EqRel→ Set with the relation lifting Rel(F )
of a functor F defined by (3) and a coalgebra c : C → FC for a finite set C sat-
isfies the assumptions 1–9 of Assum. 6.1.

Definition 6.4 (fPRH). Let theCLatu-fibration p : E→ C, the map w : ob(Sub(C)C)→
N, functors F : C → C and F : E → E, and the object C satisfy Assum. 6.1.
Algo. 2 shows the algorithm fPRH

(F,F ),w
((F, F ) and w are omitted when clear

from the context). Given a coalgebra c : C → FC, it computes a ν(c∗F )-partitioning
of C, like the naive algorithm.

The algorithm fPRH exposes a tree structure to which Hopcroft’s inequality
applies. Table 1 summarises how constructs in fPRH fit §2.

Much like fPRnaive (Algo. 1), fPRH grows a tree, as shown in Fig. 5. We take
the generated tree as T = (V,E) in §2. Note that, whereas fPRnaive expands
the tree uniformly so that every leaf has the same depth (Fig. 4), fPRH expands
leaves selectively (Fig. 5).

fPRH chooses k0 so that w(Cρk0) is maximised (Line 10). These choices con-
stitute a heavy child choice (Def. 2.3), an essential construct in Hopcroft’s in-
equality (Thm. 2.9).

fPRH starts with R = >C ∈ EC , the singleton family of a monomorphism
{κε = idC : Cε � C}, and a marking Ccl

ε = 0 of states. For each σ, Ccl
σ � Cσ



Explicit Hopcroft’s Trick in Categorical Partition Refinement 15

Algorithm 2 An optimised fibrational partition refinement algorithm
fPRH

(F,F ),w
.

Input: A coalgebra c : C → FC in C.
Output: A mono-sink {κi : Ci � C}i∈I for some I.
1: J := {ε} ⊆ N∗; Cε := C; Ccl

ε := 0 . initialisation
2: while there is ρ ∈ L(J) such that Ccl

ρ 6= Cρ do . the main loop
3: R :=

⊔
σ∈L(J)(κσ)∗(>Cσ ) . Partitioning (Line 3–9)

4: Choose a leaf ρ ∈ L(J) such that Ccl
ρ 6= Cρ

5: Rρ := (c ◦ κρ)∗(F (R))
6: if Rρ = >Cρ then
7: Ccl

ρ := Cρ
8: continue
9: Take an Rρ-partitioning {κρ,k : Cρk � Cρ}k∈{0,...,nρ}
10: Choose k0 ∈ {0, . . . , nρ} s.t. w(Cρk0) = max

k∈{0,...,nρ}
w(Cρk) . Relabelling

(Line 10–12)
11: MarkDirty(ρ, k0)
12: J := J ∪ {ρ0, . . . , ρnρ}
13: return {κσ : Cσ � C}σ∈L(J)

14: procedure MarkDirty(ρ, k0)
15: for k ∈ {0, . . . , nρ} do Ccl

ρk := Cρk

16: Let B be the pullback of the diagram:
B C

F
(
Cρk0 ∪

(⋃
σ∈L(J)\{ρ} Cσ

))
FC

c .

17: . the bottom morphism is mono by Assum. 6.1.4
18: for τ ∈ L(J ∪ {ρ0, . . . , ρnρ}) do
19: Ccl

τ := Ccl
τ ∩B . states not in B are marked as dirty

is a “subset” of Cσ consisting of clean states; the rest of Cσ consists of dirty
states. Therefore, initially, all states of C = Cε are marked dirty. The main loop,
consisting of Partitioning (Line 3–9) and Relabelling (Line 10–12), iterates
until there is no dirty state (Line 2).

The Partitioning part selects one leaf Cρ whose states include at least one
dirty state (Line 4). The tree is expanded at this selected leaf only. This selection
makes Algo. 2 different from Algo. 1, which expands the tree at every leaf (cf.
Fig. 4 and Fig. 5).

The Relabelling part then updates the clean/dirty marking. Firstly, it
chooses one “heavy child” Cρk0 (Line 10) from the leaves generated in Par-
titioning. Then the iteration calls the MarkDirty procedure (Line 14–19).
It first collects states (B in Line 16) whose all “successors” with respect to the
coalgebra c : C → FC are in the object Cρk0 ∪

(⋃
σ∈L(J)\{ρ} Cσ

)
; the latter in-

tuitively consists of states “unaffected” by tree expansion. The procedure marks
only states in B as clean (Line 19), which means that the rest of the states are
marked dirty.
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CCε CCε

C0

C1

CCε

C0

C1

C00

C01 CCε

C0

C1

C00

C01

C010

C011

· · ·

Fig. 5: At each iteration one leaf of the tree is selected and refined.

Towards the correctness theorem of our optimised fibrational algorithm fPRH

(Thm. 6.8), we first make a series of preliminary observations.

Notation 6.5. We write Ri for R defined at Line 3 of Algo. 2 at the i-th
iteration. We write Ji for J at the beginning of the i-th iteration. We write Ccl,i

σ

and κcl,iσ for Ccl
σ and the monomorphism κclσ : C

cl
σ � C, respectively, at Line 16

at the i-th iteration.

We identify loop invariants Prop. 6.6. Termination of fPRH follows from As-
sum. 6.1.7 and 9 (Prop. 6.7). Combining these, we prove the correctness of fPRH

in Thm. 6.8.

Proposition 6.6 (loop invariants). At the beginning of the i-th iteration,
the following hold.

1. (c ◦ κσ ◦ κcl,iσ )∗F (Ri) = >Ccl,i
σ

for each leaf σ ∈ L(Ji).
2. The mono-sink {κσ : Cσ � C}σ∈L(Ji) is an Ri-partitioning.
3. ν(c∗F ) v Ri.

Therefore, after Algo. 2 terminates, (c◦κσ)∗FR = >Cσ holds for each σ ∈ L(J),
{κσ � C}σ∈L(J) is an R-partitioning, and ν(c∗F ) v R, for R ∈ EC defined in
Line 3.

Proposition 6.7 (termination). Algo. 2 terminates.

The key observation for the proof of termination is that in each iteration of
the main loop either the partition is refined, or it is not but the number of dirty
leaves decreases.

Theorem 6.8 (correctness). Algo. 2 terminates and returns a ν(c∗F )-partitioning.

The explicit correspondence between fPRH and §2 (table 1) allows us to
directly use Hopcroft’s inequality. The following result, while it does not give a
complexity bound for fPRH itself, plays a central role in the amortised analysis
of its concrete instances in §6.2.

Proposition 6.9. If each call of MarkDirty in Algo. 2 takes O(K
∑nρ
k=0 w(Cρk))

time for some K, the total time taken by the repeated calls of MarkDirty is
O(Kw(C) logw(C)).
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Algorithm 3 The algorithm fPRH-ER
w , obtained as an instance of fPRH (Algo. 2)

where p is EqRel → Set, with a semantically equivalent formulation of
MarkDirty (successor-centric in fPRH; predecessor-centric here in fPRH-ER

w ).
Input: A coalgebra c : C → FC in Set.
Output: A mono-sink {κi : Ci � C}i∈I for some I.

(the same as Line 1–13 of Algo. 2)

14: procedure MarkDirty(ρ, k0)
15: for k ∈ {0, . . . , nρ} do Ccl

ρk := Cρk

16: for k ∈ {0, . . . , nρ} \ {k0} and y ∈ Cρk do
17: for x: predecessor of y do
18: Find τ ∈ L(J ∪ {ρ0, . . . , ρnρ}) such that x ∈ Cτ
19: If such τ exists, then Ccl

τ := Ccl \ {x} . mark x as dirty

6.2 Concrete Yet Functor-Generic Algorithms fPRH-ER
wC

, fPRH-ER
wP

,
fPRH-ER

wR

We instantiate the fibrational algorithm fPRH
(F,F ),w

with EqRel → Set as a
base fibration. In this situation, the functor F is an endofunctor on Set and F
is an endofunctor on EqRel which is a fibred lifting of F . This instantiation
also enables a semantically equivalent reformulation of MarkDirty—its “im-
plementation” is now “predecessor-centric” rather than “successor-centric”—and
this aids more refined complexity analysis.

For a weight function w (a parameter of fPRH), we introduce three examples
wC, wP, wR, leading to three functor-generic algorithms fPRH-ER

(F,F ),wC
, fPRH-ER

(F,F ),wP

and fPRH-ER
(F,F ),wR

.

Definition 6.10 (fPRH-ER
w ). Let Set

F−→ Set and EqRel
F−→ EqRel be func-

tors, C c−→ FC be a coalgebra, and w : P(C)→ N be a function (which amounts
to w : ob(Sub(C)C)→ N in §6.1), all satisfying Assum. 6.1 (C must be finite, in
particular). The algorithm fPRH-ER

w is shown in Algo. 3; it computes a ν(c∗F )-
partitioning of C.

Line 14–19 of Algo. 3 uses this categorical notion of predecessor (Line 17),
which is in Def. 6.11. Its equivalence to the original definition (Line 14–19 of
Algo. 2) is easy; so fPRH-ER

w is correct by Thm. 6.8. The successor-centric
description is more convenient in the correctness proof (Thm. 6.8), while the
predecessor-centric one is advantageous for complexity analysis.

Definition 6.11 (predecessor [14]). Let c : C → FC be a coalgebra in Set. For
x, y ∈ C, we say x is a predecessor of y if x 6∈ B, where B is a subset of C defined



18 T. Sanada et al.

Table 2: Examples of partition refinement algorithms induced by fPRH-ER
(F,F ),w

Functor F (X) Weight function System Algorithm: a variation of

2×XA wC(A), wR(A) DFA Hopcroft’s algorithm [6,11,16]
P(A×X) wC(A) LTS [24]
D(X) wC(A) Markov chain [25]
P(D(X)) wC(A) Markov decision process [7]

by the following pullback:

B C

F (C \ {y}) FC

c

F (iy)

.

Here iy is the canonical injection.

For w as a parameter of fPRH-ER
w , we introduce three functions.

Definition 6.12 (weight functions wC, wP, wR). We define wC, wP, wR : P(C)→
N—called the cardinality, predecessor and reachability weights, respectively—as
follows: wC(A) = |A|, wP(A) =

∑
x∈A |{y ∈ C | y is a predecessor of x}|, and

wR(A) = |A ∩ C ′|, where C ′ = {x ∈ C | x is a successor of some y ∈ C}.

The cardinality weight is the most commonly used one in various partition
refinement algorithms, including [14]. The latter two have been used in [6, 11,
16] for DFA partition refinement; we use them for the first time in categorical
partition refinement algorithms.

Our algorithm fPRH-ER
(F,w),w induces concrete partition refinement algorithms

for various systems as shown in table 2.
The effect of different weight functions is illustrated in appendix D.
The predecessor-centric MarkDirty and concrete choices of w allow the

following fine-grained complexity analysis.

Theorem 6.13 (complexity of fPRH-ER
wC

, fPRH-ER
wP

, fPRH-ER
wR

).

1. Let M = maxy∈C |{x ∈ C | x is a predecessor of y}|, the “in-degree” of
c : C → FC; suppose it takes O(f) time to compute c(x) ∈ FC for each
x ∈ C. The time complexity of fPRH-ER

wC
is O(fM |C| log |C|).

2. Let m = wP(C) =
∑
y∈C |{x ∈ C | x is a predecessor of y}|. The time

complexity of fPRH-ER
wP

is O(fm logm). Since m ≤ |C|2, it is also bounded
by O(fm log |C|).

3. The time complexity of fPRH-ER
wR

is O(fM |C ′| log |C ′|), where f and M are
from above and C ′ is from Def. 6.12.

We note that the complexity bound given in [14] is O(fm log |C|) which is the
same as 2: their algorithm is essentially fPRH-ER

wC
, but their more fine-grained,

element-wise analysis derived the aforementioned bound.
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We sketch the proof of 1 for illustration. It uses Hopcroft’s inequality (Thm. 2.9)
in its amortised analysis.

Proof (sketch). (of Thm. 6.13.1) We can check that Algo. 3 (with w = wC) satis-
fies the premise of Prop. 6.9. By implementing this algorithm properly (prepar-
ing a table for x and τ in Line 18 of Algo. 3, as done in [14]), it takes O(1)
time to execute each iteration of the loop at Line 17. Thus, the loop at Line
16 takes O(M |Cρk|) time for each k. Therefore the time taken for each call of
MarkDirty is O(M

∑
k∈{0,...,nρ}\{k0} |Cρk|). By Prop. 6.9, the time taken for

the repeated calls of MarkDirty in total is O(M |C| log |C|).
The complexity of the other parts of the algorithm is also bounded. We write

Cdi
σ for Cσ \ Ccl

σ . The computation of Rρ (Line 3–5 of Algo. 2) takes O(f |Cdi
ρ |),

and the computation of Rρ-partitioning (Line 9 of Algo. 2) takes O(|Cdi
ρ |), using

appropriate data structures (see [16]). Hence, it takes O(f |Cdi
ρ |) for each iteration

of the main loop except for MarkDirty.
Therefore, the total time for Algo. 3 except for MarkDirty (let us write

T\MarkDirty) isO(
∑
ρ for each iteration f |Cdi

ρ |). We use amortised analysis to bound
this sum. Specifically, it is easy to see that the sum

∑
ρ f |Cdi

ρ | is bounded by the
number of times that states are marked as dirty, multiplied by f . Throughout
the algorithm, the number of times that states are marked as dirty (at Line 19 of
Algo. 3) is at most the time consumed by MarkDirty, which isO(M |C| log |C|).
Therefore, T\MarkDirty is O(fM |C| log |C|); so is the total time.

Acknowledgments. The authors are supported by ERATO HASUO Metamathemat-
ics for Systems Design Project (No. JPMJER1603), JST. T. Sanada and R. Kojima are
supported by JST Grant Number JPMJFS2123. Y. Komorida is supported by JSPS
KAKENHI Grant Number JP21J13334.

References

1. Berkholz, C., Bonsma, P.S., Grohe, M.: Tight lower and upper bounds for the
complexity of canonical colour refinement. Theory Comput. Syst. 60(4), 581–614
(2017). https://doi.org/10.1007/s00224-016-9686-0

2. Bonchi, F., Holland, J., Piedeleu, R., Sobocinski, P., Zanasi, F.: Diagram-
matic algebra: from linear to concurrent systems. Proc. ACM Program. Lang.
3(POPL), 25:1–25:28 (2019). https://doi.org/10.1145/3290338, https://doi.
org/10.1145/3290338

3. de Vink, E., Rutten, J.: Bisimulation for probabilistic transition systems: a coal-
gebraic approach. Theoretical Computer Science 221(1), 271–293 (1999). https:
//doi.org/10.1016/S0304-3975(99)00035-3

4. Deifel, H.P., Milius, S., Schröder, L., Wißmann, T.: Generic partition refinement
and weighted tree automata. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.)
Formal Methods – The Next 30 Years. pp. 280–297. Springer International Pub-
lishing, Cham (2019)

5. Dorsch, U., Milius, S., Schröder, L., Wißmann, T.: Efficient coalgebraic partition
refinement. In: Meyer, R., Nestmann, U. (eds.) 28th International Conference on

https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1145/3290338
https://doi.org/10.1145/3290338
https://doi.org/10.1145/3290338
https://doi.org/10.1145/3290338
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1016/S0304-3975(99)00035-3


20 T. Sanada et al.

Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 85, pp. 32:1–32:16. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.CONCUR.
2017.32

6. Gries, D.: Describing an algorithm by Hopcroft. Acta Informatica 2(2), 97–109
(1973)

7. Groote, J.F., Rivera Verduzco, J., De Vink, E.P.: An efficient algorithm to deter-
mine probabilistic bisimulation. Algorithms 11(9) (2018). https://doi.org/10.
3390/a11090131

8. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Information and Computation 145(2), 107–152 (1998). https://doi.org/
10.1006/inco.1998.2725

9. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimisation
of tree automata. In: Holub, J., Žďárek, J. (eds.) Implementation and Application
of Automata. pp. 109–121. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

10. Högberg, J., Maletti, A., May, J.: Bisimulation minimisation for weighted tree au-
tomata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) Developments in Language
Theory. pp. 229–241. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

11. Hopcroft, J.E.: An n logn algorithm for minimizing states in a finite automaton.
In: Theory of Machines and Computations. pp. 189–196. Academic Press (1971)

12. Jacobs, B.: Categorical Logic and Type Theory. Studies in logic and the foundations
of mathematics, Elsevier Science (1999)

13. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press (2016). https://doi.org/10.1017/CBO9781316823187

14. Jacobs, J., Wißmann, T.: Fast coalgebraic bisimilarity minimization. Proc. ACM
Program. Lang. 7(POPL) (Jan 2023). https://doi.org/10.1145/3571245

15. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation 86(1), 43–68 (1990).
https://doi.org/10.1016/0890-5401(90)90025-D

16. Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoretical Computer Sci-
ence 250(1), 333–363 (2001). https://doi.org/10.1016/S0304-3975(99)00150-4

17. Komorida, Y., Katsumata, S., Hu, N., Klin, B., Humeau, S., Eberhart, C., Hasuo,
I.: Codensity games for bisimilarity. New Gener. Comput. 40(2), 403–465 (2022).
https://doi.org/10.1007/s00354-022-00186-y

18. Lombardy, S., Sakarovitch, J.: Morphisms and minimisation of weighted au-
tomata. Fundam. Informaticae 186(1-4), 195–218 (2022). https://doi.org/10.
3233/FI-222126

19. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., USA (1989)
20. Moore, E.F.: Gedanken-Experiments on Sequential Machines, pp. 129–154.

Princeton University Press, Princeton (1956). https://doi.org/10.1515/
9781400882618-006

21. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
Theoretical Computer Science. pp. 167–183. Springer Berlin Heidelberg, Berlin,
Heidelberg (1981)

22. Piedeleu, R., Kartsaklis, D., Coecke, B., Sadrzadeh, M.: Open system categorical
quantum semantics in natural language processing. In: Moss, L.S., Sobocinski, P.
(eds.) 6th Conference on Algebra and Coalgebra in Computer Science, CALCO
2015, June 24-26, 2015, Nijmegen, The Netherlands. LIPIcs, vol. 35, pp. 270–289.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/10.

https://doi.org/10.4230/LIPIcs.CONCUR.2017.32
https://doi.org/10.4230/LIPIcs.CONCUR.2017.32
https://doi.org/10.4230/LIPIcs.CONCUR.2017.32
https://doi.org/10.4230/LIPIcs.CONCUR.2017.32
https://doi.org/10.3390/a11090131
https://doi.org/10.3390/a11090131
https://doi.org/10.3390/a11090131
https://doi.org/10.3390/a11090131
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1145/3571245
https://doi.org/10.1145/3571245
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/S0304-3975(99)00150-4
https://doi.org/10.1016/S0304-3975(99)00150-4
https://doi.org/10.1007/s00354-022-00186-y
https://doi.org/10.1007/s00354-022-00186-y
https://doi.org/10.3233/FI-222126
https://doi.org/10.3233/FI-222126
https://doi.org/10.3233/FI-222126
https://doi.org/10.3233/FI-222126
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.4230/LIPIcs.CALCO.2015.270


Explicit Hopcroft’s Trick in Categorical Partition Refinement 21

4230/LIPIcs.CALCO.2015.270, https://doi.org/10.4230/LIPIcs.CALCO.2015.
270

23. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249(1), 3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6, mod-
ern Algebra

24. Valmari, A.: Bisimilarity minimization in O(m logn) time. In: Franceschinis, G.,
Wolf, K. (eds.) Applications and Theory of Petri Nets. pp. 123–142. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009)

25. Valmari, A., Franceschinis, G.: Simple o(m logn) time markov chain lumping. In:
Esparza, J., Majumdar, R. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 38–52. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

26. Wißmann, T., Deifel, H., Milius, S., Schröder, L.: From generic partition refinement
to weighted tree automata minimization. Formal Aspects Comput. 33(4-5), 695–
727 (2021). https://doi.org/10.1007/s00165-020-00526-z

https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/s00165-020-00526-z
https://doi.org/10.1007/s00165-020-00526-z


22 T. Sanada et al.

A Proofs for Section 2 (Hopcroft’s Inequality)

Lemma 2.4. Let T be a finite tree with a root r, w be a weight function of
T , and S be an arbitrary set of edges of T . Then

∑
v∈V (T )

∑
u∈ch(v)
(v,u) 6∈S

w(u) ≥∑
l∈L(T )

∣∣path(r, l) \ S∣∣ · w(l) holds. The equality holds when w is tight.

Proof. Let r be the root of T . We prove by the induction on the size of T .
(Base case). T is a tree whose vertex is only r. Thus we have∑

v∈V (T )

∑
u∈ch(v)
(v,u)6∈S

w(u) =
∑

u∈∅=ch(r)
(v,u) 6∈S

w(u) = 0 =
∣∣∅∣∣·w(r) = ∑

l∈L(T )

∣∣path(r, l)\S∣∣·w(l).
(Induction step). Let U = ch(r) ∩ S and W = ch(r) \ S. The following

calculation shows the inequality:∑
v∈V (T )

∑
u∈ch(v)
(v,u)6∈S

w(u)

=
∑
r′∈W

w(r′) +
∑

r′∈U∪W

∑
v∈V (tr(r′))

∑
u∈ch(v)
(v,u)6∈S

w(u)

≥
∑
r′∈W

w(r′) +
∑

r′∈U∪W

∑
l∈L(tr(r′))

∣∣path(r′, l) \ S∣∣ · w(l)
induction hypothesis

=
∑
r′∈U

∑
l∈L(tr(r′))

∣∣path(r′, l) \ S∣∣ · w(l) + ∑
r′∈W

w(r′) + ∑
l∈L(tr(r′))

∣∣path(r′, l) \ S∣∣ · w(l)


≥
∑
r′∈U

∑
l∈L(tr(r′))

∣∣path(r′, l) \ S∣∣ · w(l) + ∑
r′∈W

 ∑
l∈L(tr(r′))

w(l) +
∑

l∈L(tr(r′))

∣∣path(r′, l) \ S∣∣ · w(l)


by w(r′) ≥
∑

l∈L(tr(r′))

w(l)

=
∑
r′∈U

∑
l∈L(tr(r′))

∣∣path(r′, l) \ S∣∣ · w(l) + ∑
r′∈W

∑
l∈L(tr(r′))

(
w(l) +

∣∣path(r′, l) \ S∣∣ · w(l))
=
∑
r′∈U

∑
l∈L(tr(r′))

∣∣path(r, l) \ S∣∣ · w(l) + ∑
r′∈W

∑
l∈L(tr(r′))

∣∣path(r, l) \ S∣∣ · w(l)
=

∑
l∈L(T )

∣∣path(r, l) \ S∣∣ · w(l).
When w is tight, we have w(r′) =

∑
l∈L(tr(r′)) w(l) for every r

′ ∈W , and the
equality holds.
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Lemma 2.8. Let T be a finite tree with a root r, w be a weight of T , and h be
an hcc for w. For each vertex v ∈ V (T ) with w(v) 6= 0, the following inequality
holds: | lpath(r, v)| ≤ log2 w(r)− log2 w(v).

Proof. Let 〈(v1, u1), . . . , (vm, um)〉 be the sequence of the light edges of lpath(r, v)
in the order from r to v. Since ui 6= hvi , we have 2 ·w(ui) ≤ w(vi). We also have
w(vi+1) ≤ w(ui). Hence, the following inequality holds:

w(r) ≥ w(v1) ≥ 2 · w(u1)
≥ 2 · w(v2) ≥ 22 · w(u2)
. . .

≥ 2m−1 · w(vm) ≥ 2m · w(um)

≥ 2m · w(v).

Taking the logarithm of both sides yields | lpath(r, v)| = m ≤ log2 w(r) −
log2 w(v).

Theorem 2.9 (Hopcroft’s inequality). Let T be a finite tree with root r, w
be a weight function of T , and h be a heavy child choice for w. The following
inequality holds.∑

v∈V (T )

∑
u∈lchh(v)

w(u) ≤ w(r) log2 w(r)−
∑

l∈L(T )
w(l) 6=0

w(l) log2 w(l) (2)

Proof. Let w′ be the tightening of w. By Lem. 2.7, w′ is a tight weight function,
and h is also a heavy child choice for w′. If we have∑

v∈V (T )

∑
u∈lchh(v)

w′(u) ≤ w′(r) log2 w
′(r)−

∑
l∈L(T ),w′(l)6=0

w′(l) log2 w
′(l) (4)

then the desired inequality holds:∑
v∈V (T )

∑
u∈lchh(v)

w(u) ≤
∑

v∈V (T )

∑
u∈lchh(v)

w′(u) Lem. 2.7

≤ w′(r) log2 w′(r)−
∑

l∈L(T )
w′(l) 6=0

w′(l) log2 w
′(l)

≤ w(r) log2 w(r)−
∑

l∈L(T )
w(l) 6=0

w(l) log2 w(l). Lem. 2.7

Now, our goal is to show (4). It is proven by the following calculation:∑
v∈V (T )

∑
u∈lchh(v)

w′(u)
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=
∑

l∈L(T )

∑
(v,u)∈lpath(r,l)

w′(l) w′: tight, and Lem. 2.5

=
∑

l∈L(T )
w′(l) 6=0

∑
(v,u)∈lpath(r,l)

w′(l)

≤
∑

l∈L(T )
w′(l) 6=0

(log2 w
′(r)− log2 w

′(l)) · w′(l) Lem. 2.8

=

 ∑
l∈L(T )
w′(l)6=0

w′(l)

 log2 w
′(r)−

∑
l∈L(T )
w′(l)6=0

w′(l) log2 w
′(l)

= w′(r) log2 w
′(r)−

∑
l∈L(T )
w′(l)6=0

w′(l) log2 w
′(l).

B Proofs for Section 5 (The Naive Fibrational Algorithm
fPRnaive)

Lemma 5.3 (loop invariant). At the beginning of each iteration of the main
loop, the following hold.

1. The mono-sink {κσ : Cσ � C}σ∈L(T ) is an R-partitioning.
2. ν(c∗F ) v R.

Proof. Firstly we prove the following two lemmas.

Lemma B.1. Assume a CLatu-fibration p : E → C satisfies Assum. 5.1. Now
let {κi : Ai� C}i∈I be a mono-sink in C that is pairwise disjoint, λ : B� C be
a monomorphism with Ai ∩B ∼= 0 for each i ∈ I, Pi ∈ EAi , and R ∈ EB. Then
we have λ∗

((⊔
i∈I(κi)∗(Pi)

)
t λ∗(R)

)
= R.

The above claim can be understood as follows: when a monomorphism B�
C is added to a mono-sink {κi : Ai � C}i∈I , if B is disjoint from each Ai
(Ai ∩B ∼= 0), then the objects Pi above Ai do not interfere with R above B.

E

C

p

. . .
Pi. . . R λ∗R

(κi)∗Pi

λ∗

(κi)∗

. . .
Ai. . . B

C

λ

κi

Cond. 3 can be equationally expressed by λ∗(κ∗(Q) t λ∗(R)) = (λ∗κ∗(Q)) t
(λ∗λ∗(R)); it can be thought of as a fibrational analogue of modularity of a
lattice.
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Proof. Let A =
⋃
i∈I Ai, κ : A� C, and ιi : Ai� A for each i ∈ I. Notice that

the following diagram is a pullback since Sub(C)C is distributive (Cond. 1):

0 = B ∩ (
⋃
i∈I Ai) B

⋃
i∈I Ai C.

λ

κ

(5)

We have

λ∗

((⊔
i∈I

(κi)∗(Pi)

)
t λ∗(R)

)

= λ∗

((⊔
i∈I

(κ ◦ ιi)∗(Pi)

)
t λ∗(R)

)

= λ∗

(
κ∗

(⊔
i∈I

(ιi)∗(Pi)

)
t λ∗(R)

)
κ∗: left adjoint

=

(
λ∗κ∗

(⊔
i∈I

(ιi)∗(Pi)

))
t (λ∗λ∗(R)) Cond. 3

= ⊥ tR eq. (5) and Cond. 2
= R.

The following lemma intuitively says that a partitioning can be refined by
another partitioning of one of its leaves, in the manner shown as follows.

C

C0

C1

...
Cm

κ0

κ1
κm

D0

...
Dn

λ0

λn

Lemma B.2. Let p : E→ C be a CLatu-fibration that satisfies the three condi-
tions in Lem. B.1, C ∈ C, R ∈ EC , {κj : Cj � C}j∈{0,...,m} be an R-partitioning
of C, R0 be an object of EC0

, and {λk : Dk � C0}k∈{0,...,n} be an R0-partitioning
of C0. The family of monomorphisms

Π = {κ0 ◦ λk : Dk � C}k∈{0,...,n} ∪ {κj : Cj � C}j∈{1,...,m}

is a Q-partitioning of C where

Q =
(⊔n

k=0 (κ0 ◦ λk)∗(>Dk)
)
t
(⊔m

j=1 (κj)∗(>Cj )
)
= (κ0)∗(R0)t

(⊔m
j=1 (κj)∗(>Cj )

)
.
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Proof. We check that Π satisfies the conditions 1–3 of Def. 4.1.
Π satisfies Def. 4.1.2 by the definition of Q.
For each k ∈ {0, . . . , n} and j ∈ {1, . . . ,m}, we have Dk ∩ Cj = 0. Since

{κj : Cj � C}j∈{0,...,m} and {λk : Dk � C0}k∈{0,...,n} are partitioning, we have
Cj ∩ Cj′ = 0 for j, j′ ∈ {1, . . . ,m} with j 6= j′ and Dk ∩ Dk′ = 0 for k, k′ ∈
{1, . . . , n} with k 6= k′. Moreover, we have Cj 6∼= 0 and Dk 6∼= 0 for each j and k.
Thus, Π satisfies Def. 4.1.3.

We have

κ∗j (Q) = κ∗j

(κ0)∗(R0) t

 m⊔
j′=1

(κj′)∗(>Cj′ )


= >Cj Lem. B.1

for j ∈ {1, . . . ,m}, and

(κ0 ◦ λk)∗(Q)

= (κ0 ◦ λk)∗
( n⊔

k′=0

(κ0 ◦ λk′)∗(>Dk′ )

)
t

 m⊔
j=1

(κj)∗(>Cj )


= >Dk Lem. B.1

for k ∈ {0, . . . , n}. Hence, Π satisfies Def. 4.1.1. Therefore, Π is a Q-partitioning
of C.

We go back to the proof of Lem. 5.3. We write Ri and Ti for R and T ,
respectively, at the beginning (line 2) of the i-th iteration of the main loop. We
prove 1 and 2 by the induction on i.

(Base case). We have R0 = >C and T0 = {ε}. The mono-sink is {κε : Cε�
C}, and this is an R0-partitioning of C. We also have ν(c∗F ) v >C = R0.

(Induction step). Assume that {κσ : Cσ �}σ∈L(Ti) is an Ri-partitioning
and ν(c∗F ) v Ri. By ν(c∗F ) v Ri, we have ν(c∗F ) = c∗F (ν(c∗F )) v c∗F (Ri) =
Ri+1. Hence, 2 holds for i + 1. By Lem. B.2 and the induction hypothesis, we
have {κσ : Cσ � C}σ∈L(Ti+1) is an Ri+1-partitioning. Therefore, 1 holds for i+1.

Lemma 5.4 (termination). If EC is a well-founded lattice, Algo. 1 termi-
nates.

Proof. We write Ri for R at the beginning (line 2) of the i-th iteration of the
main loop, and have

R0 = >C , R1 = c∗FR0, . . . , Ri+1 = c∗FRi, . . . .

We have R1 v >C = R0. It is proven by the induction on i and the functoriality
of c∗F that Ri = c∗FRi−1 v Ri−1 holds for each i such that Ri is defined.
By this observation and the condition in line 2, we have the strictly descending
sequence in EC : R0 A R1 A · · · A Rn A · · · . Since EC is well-founded, the length
of the sequence is finite, that is Algo. 1 terminates.
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Proposition 5.5 (correctness). If EC is well-founded, then Algo. 1 termi-
nates and returns ν(c∗F )-partitioning {κ : Ci� C}i∈I .

Proof. By Lem. 5.4, Algo. 1 terminates. From the termination condition (line
2) of the main loop, R = c∗FR holds when the algorithm terminates. Hence, R
is a fixed point. By Lem. 5.3.2, R is greater than or equal to the greatest fixed
point ν(c∗F ) of the functor c∗F . Thus, we have R = ν(c∗F ).

C Proofs for Section 6 (Optimised Algorithms with
Hopcroft’s Inequality)

Proposition 6.3. The fibration p : EqRel→ Set with the relation lifting Rel(F )
of a functor F defined by (3) and a coalgebra c : C → FC for a finite set C sat-
isfies the assumptions 1–9 of Assum. 6.1.

Proof. We only prove that p : EqRel→ Set satisfies the premise 3 of Lem. B.1.
The other conditions are easy to check.

Given injections κ : A� C and λ : B� C in Set and equivalence relations R
on A and S on B. We want to show (λ∗κ∗R)t(λ∗κ∗S) = λ∗((κ∗R)t(λ∗S)). For
any (x, y) ∈ λ∗((κ∗R) t (λ∗S)), we have (λ(x), λ(y)) ∈ (κ∗R) t (λ∗S). Hence,
there exist m ∈ N and z0, . . . , zm ∈ C such that z0 = λ(x), zm = λ(y), and
(zi, zi+1) ∈ κ∗R or (zi, zi+1) ∈ λ∗S for each i = 0, . . . ,m−1. We can assume that
zi 6= zi+1 and zi ∈ λ(B) for each i without loss of generality since λ(x), λ(y) ∈
λ(B). Thus, the sequence x = λ−1(z0), λ

−1(z1), . . . , λ
−1(zm) = y in B satisfies

(λ−1(zi), λ
−1(zi+1)) ∈ λ∗κ∗R or (λ−1(zi), λ

−1(zi+1)) ∈ λ∗λ∗S for each i. This
means (x, y) ∈ (λ∗κ∗R)t(λ∗λ∗S). Hence, λ∗((κ∗R)t(λ∗S)) v (λ∗κ∗R)t(λ∗λ∗S)
holds. Conversely, we can show λ∗((κ∗R) t (λ∗S)) w (λ∗κ∗R) t (λ∗λ∗S) by the
similar argument.

Proposition 6.6 (loop invariants). At the beginning of the i-th iteration, the
following hold.

1. (c ◦ κσ ◦ κcl,iσ )∗F (Ri) = >Ccl,i
σ

for each leaf σ ∈ L(Ji).
2. The mono-sink {κσ : Cσ � C}σ∈L(Ji) is an Ri-partitioning.
3. ν(c∗F ) v Ri.

Therefore, after Algo. 2 terminates, (c◦κσ)∗FR = >Cσ holds for each σ ∈ L(J),
{κσ � C}σ∈L(J) is an R-partitioning, and ν(c∗F ) v R, for R ∈ EC defined in
Line 3.

Proof. We first prove lemmas to prove the loop invariants. The next technical
lemma follows easily from the fibredness of F .

Lemma C.1. Let m : A→ C be a morphism in C and P1, P2 ∈ EC . If m∗P1 =
m∗P2, then, for any C ′ ∈ C, κ : C ′ → C and λ : C ′ → FA such that c ◦ κ =
Fm ◦ λ, we have κ∗(c∗FP1) = κ∗(c∗FP2).
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Proof. For j = 1, 2, we have

κ∗(c∗FPj) = λ∗((Fm)∗FPj) c ◦ κ = Fm ◦ λ
= λ∗(F (m∗Pj)). Assum. 6.1.3

Hence, by the assumptionm∗P1 = m∗P2, we obtain κ∗(c∗FP1) = λ∗(F (m∗P1)) =
λ∗(F (m∗P2)) = κ∗(c∗FP2).

The next lemma (Lem. C.2) identifies the subobject of C that is “unaffected”
by the refinement from Ri to Ri+1, that is, by the tree expansion at the i-th
iteration. It is not hard to see that the untouched leaves in

⋃
σ∈L(T )\{ρ} Cσ belong

to that “unaffected” part. A crucial observation—central to the Hopcroft-type
optimisation—is that at most one new child Cρk0 can also be added, where we
pick the heavy one for better complexity.

Lemma C.2. Let ρ be the leaf ρ ∈ L(Ti) \ L(Ti+1) that was chosen in Parti-
tioning of the i-th iteration, and k0 ∈ {0, . . . , nρ} be the index that was chosen
in Relabelling of the i-th iteration. We have m∗(Ri) = m∗(Ri+1) for the mor-
phism m : Cρk0 ∪

(⋃
σ∈L(Ti)\{ρ} Cσ

)
� C.

Proof. Let P =
⊔
σ∈L(Ti)\{ρ}(κσ)∗(>Cσ ), and Rρ =

⊔
k∈{0,...,nρ}(κ

′
ρk)∗(>Cρk).

By Lem. B.1.1, the following diagram is pullback:

Cρk0 Cρ

Cρk0 ∪
(⋃

σ∈L(Ti)\{ρ} Cσ

)
C.

ι′

κ′k0

κρ

m

Thus, the following diagram commutes by Lem. B.1.2.

ECρk0 ECρ

E
Cρk0∪

(⋃
σ∈L(Ti)\{ρ}

Cσ
) EC

ι′∗ (κρ)∗

(κ′k0
)∗

m∗

(6)

By chasing the diagram, we have

m∗((κρ)∗(>Cρ)) = ι′∗((κ
′
k0)
∗(>Cρ)) eq. (6)

= ι′∗(>Cρk0 ), (κ′k0)
∗: right adjoint and >: limit

(7)

and

m∗ ((κρ)∗(Rρ)) = ι′∗
(
(κ′k0)

∗(Rρ)
)

eq. (6)
= ι′∗(>Cρk0 ). {κ′ρk : Cρk � Cρ}k is Rρ-partitioning

(8)
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There are monomorphisms ισ : Cσ � Cρk0∪
⋃
σ∈L(Ti)\{ρ} Cσ for each σ ∈ L(Ti)\

{ρ} with κσ = m ◦ ισ. We have

m∗(Ri)

= m∗

 ⊔
σ∈L(Ti)

(κσ)∗(>Cσ )

 Definition of Ri

= m∗

(κρ)∗(>Cρ) t
⊔

σ∈L(Ti)\{ρ}

(κσ)∗(>Cσ )


= m∗

(κρ)∗(>Cρ) t
⊔

σ∈L(Ti)\{ρ}

(m ◦ ισ)∗(>Cσ )

 κσ = m ◦ ισ

= m∗

(κρ)∗(>Cρ) tm∗

 ⊔
σ∈L(Ti)\{ρ}

(ισ)∗(>Cσ )

 m∗: left adjoint

= m∗(κρ)∗(>Cρ) tm∗m∗

 ⊔
σ∈L(Ti)\{ρ}

(ισ)∗(>Cσ )

 Lem. B.1.3

= ι′∗(>Cρk0 ) tm
∗m∗

 ⊔
σ∈L(Ti)\{ρ}

(ισ)∗(>Cσ )

 (7)

and

m∗(Ri+1)

= m∗

( nρ⊔
k=0

(κρ ◦ κ′ρk)∗(>Cρk)

)
t

 ⊔
σ∈L(Ti)\{ρ}

(κσ)∗(>Cσ )

 Definition of Ri+1

= m∗

(κρ)∗(Rρ) t

 ⊔
σ∈L(Ti)\{ρ}

(κσ)∗(>Cσ )

 (κρ)∗: left adjoint

= m∗

(κρ)∗(Rρ) t

 ⊔
σ∈L(Ti)\{ρ}

(m ◦ ισ)∗(>Cσ )

 κσ = m ◦ ισ

= m∗

(κρ)∗(Rρ) tm∗

 ⊔
σ∈L(Ti)

(ισ)∗(>Cσ )

 m∗: left adjoint

= m∗(κρ)∗(Rρ) tm∗m∗

 ⊔
σ∈L(Ti)

(ισ)∗(>Cσ )

 Lem. B.1.3
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= ι′∗(>Cρk0 ) tm
∗m∗

 ⊔
σ∈L(Ti)\{ρ}

(ισ)∗(>Cσ )

 . (8)

Therefore, we obtain m∗(Ri) = m∗(Ri+1).

We illustrate the proof of Lem. C.2. See Fig. 6. A set C is the disjoint union
C0 ∪ C1 ∪ C2, where C0 = C00 ∪ C01 ∪ C02. An equivalence relation R on C
corresponds to a partitioning {C0, C1, C2}, and an equivalence relation R′ on
C corresponds to a partitioning {C00, C01, C02, C1, C2}. As illustrated in Fig. 6,
when restricted to C00 ∪ C1 ∪ C2, R and R′ coincide. This restriction yields
the same equivalence relation, and Lem. C.2 formalises this coincidence. An
important observation is that, we cannot add one extra to the restriction. For
example, if we restrict R and R′ to C00 ∪C01 ∪C1 ∪C2 (with both C00 and C01

included), we have m∗(R) 6= m∗(R′), as depicted in Fig. 7.

C00 ∪ C1 ∪ C2 =

C =

m

C00 C01 C02

C1 C2

m∗(R) =

R =

m∗

C0

C1 C2

m∗(R′)=

R′ =

m∗

C00 C01 C02

C1 C2

Fig. 6: An example situation of Lem. C.2 in EqRel→ Set: m∗(R) = m∗(R′).

C00 ∪ C01

∪ C1 ∪ C2

=

C =

m

C00 C01 C02

C1 C2

m∗(R) =

R =

m∗

C0

C1 C2

m∗(R′)=

R′ =

m∗

C00 C01 C02

C1 C2

Fig. 7: We cannot add more than one child to the domain of m in Lem. C.2.

We go back to the proof of Prop. 6.6. The claim 2 follows from Lem. B.2
and the induction on i. The claim 3 follows from the assumption that p admits
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partitioning (Assum. 6.1.5) and the induction on i. We prove 1 by the induction
on i.

(Base case). We have Ccl,0
ε = 0. Hence, from Assum. 6.1.2, we have

(κcl,0ε )∗κ∗εc
∗F (R0) = >Ccl,0

ε
.

(Induction step). We assume that 1 holds for i, and need to show 1 for
i+ 1. For each σ ∈ L(Ti+1), Ccl,i+1

σ is defined by the following pullback:

Ccl,i+1
σ Ccl,i

σ

Cσ

B C

F
(
Cρk0 ∪

(⋃
σ∈L(T )\{ρ} Cσ

))
FC .

κ

κcl,i
σ

κσ

l

h c

Fm

Applying Lem. C.1 to the above diagram and the result of Lem. C.2, we have

(κcl,i+1
σ )∗κ∗σc

∗FRi+1 = (κcl,i+1
σ )∗κ∗σc

∗FRi. (9)

If σ ∈ Ti, the right-hand side is calculated as:

(κcl,i+1
σ )∗κ∗σc

∗FRi = κ∗(κcl,iσ )∗κ∗σc
∗FRi

= κ∗(>Ccl,i
σ

) Induction hypothesis

= >Ccl,i+1
σ

. κ∗ a κ∗ and >Ccl,i
σ

is a limit

Otherwise, we have σ = ρk for some k ∈ {0, . . . , nρ} where ρ ∈ L(Ti) is the
chosen leaf at the Partitioning step. Then, we have

(κcl,i+1
ρk )∗κ∗ρkc

∗FRi

= (κcl,i+1
ρk )∗κ∗ρk,kκ

∗
ρc
∗FRi κρk = κρ ◦ κρk,k

= (κcl,i+1
ρk )∗(>Cρk) Def. 4.1.1

= >Ccl,i+1
ρk

. (κcl,i+1
ρk )∗ a (κcl,i+1

ρk )∗ and >Cρk is a limit

Hence, we have (κcl,i+1
σ )∗κ∗σc

∗FRi+1 = >Ccl,i+1
σ

for each σ ∈ L(Ti+1).

Proposition 6.7 (termination). Algo. 2 terminates.

Proof. To prove termination, we use the lexicographical order E on EC × N,
where the order of N is the usual order ≤. The order ≤ is well-founded, and v
is well-founded by Assum. 6.1.7. Thus, E is also well-founded. Let di = |{σ ∈
L(Ti) | Ccl,i

σ 6= Cσ}|.



32 T. Sanada et al.

We show that if Ccl,i
ρ 6= Ciρ holds for some ρ ∈ L(T ), then we have (Ri+1, di+1)/

(Ri, di). Suppose that, at the line 4 of the i-th iteration of the main loop, a leaf
ρ ∈ L(Ti) such that Ccl,i

ρ 6= Ciρ is chosen. We have two cases.
Case (c◦κρ)∗(FRi) @ >Cρ . In this case, we have Ri @ Ri+1 by Assum. 6.1.9.

Thus, (Ri+1, di+1) / (Ri, di) holds.
Case (c ◦ κρ)∗(FRi) = >Cρ . In this case, the line 7 is executed, and the

number of σ ∈ T with Ccl
σ 6= Cσ reduces: di+1 < di.

By the above argument shows that, after finite number of iteration, we have
Ccl
ρ = Cρ for all ρ ∈ L(T ). This means that Algo. 2 terminates.

Theorem 6.8 (correctness). Algo. 2 terminates and returns a ν(c∗F )-partitioning.

Proof. Termination is ensured by Prop. 6.7. Let R, T and {Cσ � C}σ∈L(T )

be as defined in the last iteration of the main loop. Our goal is to show that
{Cσ � C}σ∈L(T ) is a ν(c∗F )-partitioning of C.

We prove R = c∗F (R). By Prop. 6.6, {Cσ � C}σ∈L(T ) is an R-partitioning.
We also have κ∗σ(c∗F (R)) = >Cσ for each σ ∈ L(T ). Thus, we have

R =
⊔

σ∈L(T )

(κσ)∗(>Cσ ) the definition of R

=
⊔

σ∈L(T )

(κσ)∗(κ
∗
σ(c
∗F (R))) Def. 4.1.2

= c∗F (R). Assum. 6.1.5

From Prop. 6.6.3, we have ν(c∗F ) v R. Hence, we have R = ν(c∗F ).

D Illustration of Runs of Algo. 3

We illustrate Algo. 3 for non-deterministic automata.

Example D.1. Let Σ = {a, b}, C = {x, y, z, w, v}, NΣ be the functor from Ex-
ample 3.10, andNΣ = Rel(NΣ) (Def. 3.6). We define a coalgebra c : C → NΣC as

(4 steps) · · ·

wC

C01

C1

C00

x

y

w

z

v

a
a

a

a

b b

b
b

b
b

a

wC

C0

C1

x

y

w

z

v

a
a

a

a

b b

b
b

b
b

a

wP

C01

C1

C00

x

y

w

z

v

a
a

a

a

b b

b
b

b
b

a

wP

· · · (2 steps)

Fig. 8: The snapshots at the end of first and second iterations of fPRH-ER
(NΣ ,NΣ),wC

and fPRH-ER
(NΣ ,NΣ),wP

for c. Yellow areas depict partitions which are refined as the
main loop repeats. Clean states are white and dirty states are black.
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shown in Fig. 8. We compare the executions fPRH-ER
(NΣ ,NΣ),wC

and fPRH-ER
(NΣ ,NΣ),wP

.
At the both initialisations (Line 1), we have a tree whose sole leaf is equal to C,
which represents the initial partition, and every state in C marked as dirty.

In the first iteration, both fPRH-ER
(NΣ ,NΣ),wC

and fPRH-ER
(NΣ ,NΣ),wP

split Cε and
obtain C0 and C1. The k0 chosen at Line 10 is 0 (i.e. C0) in both algorithms,
and predecessors of z are marked as dirty (the centre figure of Fig. 8).

In the second iteration, both fPRH-ER
(NΣ ,NΣ),wC

and fPRH-ER
(NΣ ,NΣ),wP

split C0 and
obtain C00 and C01. The k0 chosen at Line 10 of fPRH-ER

(NΣ ,NΣ),wC
is 1 (i.e. C01)

because wC(C01) = 3 > 1 = wC(C00), and predecessors of w are marked as dirty
(the left figure of Fig. 8).. The k0 chosen at Line 10 of fPRH-ER

(NΣ ,NΣ),wP
is 0 (i.e.

C00) because wP(C00) = 4 > 3 = wP(C01), and predecessors of the states in C01

are marked as dirty (the right figure of Fig. 8).
fPRH-ER

(NΣ ,NΣ),wP
marks states as dirty less than fPRH-ER

(NΣ ,NΣ),wC
. Hence, fPRH-ER

(NΣ ,NΣ),wP

terminates in fewer steps compared with fPRH-ER
(NΣ ,NΣ),wC

.
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