

Optics, functorially

Adriana Balan Silviu-George Pantelimon

National University of Science and Technology POLITEHNICA Bucharest

CMCS 2024, Luxembourg

Motivation

CMCS²24

- Monads: model notions of computations [Moggi'89,'91]
- Monad transformers: combine computational effects [Liang-Hudak-Jones'95, Moggi'97, Benton-Hughes-Moggi'00]
- Lenses: bidirectional (bx) transformations (view-update of databases) (get : $A \longrightarrow B$, put : $A \times B' \longrightarrow A'$) [Oles'82]
- Lens transformers?
- More generally, (mixed) optics as bx transformations

Features: modularity, compositionality

Applications: game theory, machine learning, database systems

Therefore ... what about **optics transformers**?

Name	Description	Actions	Base
Adapter	$C(S, A) \otimes D(B, T)$	(Optic _{id,id})	ν,⊗
Lens	$C(S, A) \times D(S \bullet B, T)$	(Optic _{×.•})	W,×
Monoidal lens	$CCom(S, A) \times C(US \otimes B, T)$	(Optic _{⊗,µ×})	W, \times
Algebraic lens	$C(S, A) \times D(\Psi S \bullet B, T)$	$(Optic_{u \times M^{\bullet}})$	W,×
Monadic lens	$W(S, A) \times W(S \times B, \Psi T)$	(Optic _{×,×})	W, \times
Linear lens	$C(S, [B, T] \bullet A)$	$(Optic_{\bullet,\otimes})$	\mathcal{V}, \otimes
Prism	$\mathbf{C}(S, T \bullet A) \times \mathbf{D}(B, T)$	(Optice+)	W,×
Coalg. prism	$C(S, \Theta T \bullet A) \times D(B, T)$	$(Optic_{u\bullet,u+})$	\mathcal{W}, \times
Grate	$\mathbf{D}([S, A] \bullet B, T)$	$(Optic_{\{,\},\bullet})$	ν, \otimes
Glass	$C(S \times [[S, A], B], T)$	$(Optic_{x[,],x[,]})$	W,×
Affine traversal	$C(S, T + A \otimes \{B, T\})$	$(Optic_{+\otimes,+\otimes})$	W.×
Traversal	$\mathcal{V}(S, \sum^n A^n \otimes [B^n, T])$	(Optic _{Pw,Pw})	ν, \otimes
Kaleidoscope	$\sum_{n} \mathcal{V}([A^n, B], [S^n, T])$	$(Optic_{App,App})$	ν, \otimes
Setter	$\overline{\mathcal{V}}([A,B],[S,T])$	(Optic _{ev,ev})	ν, \otimes
Fold	$\mathcal{V}(S,\mathcal{L}A)$	$(Optic_{Foldable,*})$	ν, \otimes

Table of optics [Clarke et al. '24]

Monoidal categories

Monoidal category: a category \mathcal{M} equipped with a tensor product (bifunctor)

$$\mathscr{M} \times \mathscr{M} \longrightarrow \mathscr{M}$$
, $(M, N) \mapsto M \otimes N$

and a unit object I, such that \otimes is associative and unital up to coherent isomorphism

Examples

- Any category \mathscr{M} with finite (co)products
- Endofunctors $[\mathscr{A}, \mathscr{A}]$, with functor composition
- Presheaves [\mathscr{A}^{op} , Set] over a (small) category \mathscr{A} , with Day convolution
- The Eilenberg-Moore category of algebras of a commutative monad on a monoidal category

Actegories [Beńabou'67, McCrudden'00, Capucci-Gavranović'22]

 (\mathscr{M},\otimes,I) monoidal category

M-actegory: a category *A* equipped with an action (bifunctor)

$$\mathscr{M} \times \mathscr{A} \longrightarrow \mathscr{A}$$
, $(M, A) \mapsto M \cdot A$

associative and unital up to coherent isomorphism

$$(M \otimes N) \cdot A \cong M \cdot (N \cdot A) , I \cdot A \cong A$$

Examples

- Any monoidal category ${\mathscr M}$ acts on itself via the tensor product
- For any category \mathscr{A} , $[\mathscr{A}, \mathscr{A}]$ acts on \mathscr{A} via functor application
- The Kleisli category of a strong monad on a monoidal category

Actegories

Lax \mathcal{M} -morphism: functor $F : \mathcal{A} \longrightarrow \mathcal{B}$ between \mathcal{M} -actegories, endowed with natural transformation st : $M \cdot FA \longrightarrow F(M \cdot A)$ (strength), compatible with the \mathcal{M} -actions

Example. If \mathscr{M} is a cartesian category acting on itself, then an \mathscr{M} -lax endofunctor $\mathscr{M} \longrightarrow \mathscr{M}$ is precisely a **strong** functor.

Remark. A lax \mathcal{M} -morphism structure on an endofunctor F on an \mathcal{M} -actegory is the same as a **lifting** of the \mathcal{M} -action to $\operatorname{Coalg}(F)$, such that the forgetful functor becomes strict \mathcal{M} -morphism (strength is identity)

Colax \mathcal{M} -morphism: lax \mathcal{M} -morphism between opposite actegories. A colax \mathcal{M} -morphism F comes equipped with a **costrength** cst : $F(M \cdot A) \longrightarrow M \cdot FA$

Example. Let \mathscr{M} be a cartesian category acting on itself. An endofunctor on \mathscr{M} is a colax \mathscr{M} -morphism (also known as **costrong** functor) iff it is **copointed** [B-Pantelimon'24]

(Co)Lax *M*-transformation: natural transformation between (co)lax *M*-morphisms, compatible with their (co)strengths

The Para construction

[Wood'76, Hermida-Tennent'12, Fong-Spivak-Tuyéras'19, Capucci-Gavranović-Hedges'20]

Let \mathscr{A} be an $\mathscr{M}\text{-}\mathsf{actegory}$

Para(\mathscr{A}): bicategory which "adds parameters" to \mathscr{A}

- the objects are those of A
- the morphisms are *M*-parametrised morphisms $(M \in \mathcal{M}, f : M \cdot A \longrightarrow B)$
- 2-cells are given by reparametrisation

Remarks

- The construction \mathscr{M} -Act₁ \longrightarrow Bicat, $\mathscr{A} \mapsto$ Para(\mathscr{A}) is functorial with respect to lax \mathscr{M} -morphisms.
- There is a 2-opfibration $Para(\mathscr{A}) \longrightarrow B\mathscr{M}$ over the delooping of \mathscr{M} , by projecting parameters.
- Dually, $CoPara(\mathscr{A}) = Para(\mathscr{A}^{op})$ gives a functor \mathscr{M} -Act_c \longrightarrow Bicat and a 2-fibration over B \mathscr{M}

Optics

Informally: optics are coupled pairs of coparametrised and parametrised morphisms, but with externally **unobservable** joint parameter

Let \mathscr{A}, \mathscr{B} be two \mathscr{M} -actegories

A (mixed) optic from (A, B) with the focus on (A', B') is an element of the coend

$$\operatorname{\mathbf{Optic}}_{\mathscr{A},\mathscr{B}}((A,B),(A',B'))=\int^{M}\mathscr{A}(A,M\cdot A') imes \mathscr{B}(M\cdot B',B)$$

where $A, A' \in \mathscr{A}$ and $B, B' \in \mathscr{B}$

Optics are arrows of a **category Optic** $_{\mathscr{A},\mathscr{B}}$, which comes with an identity on objects fully faithful functor

$$\mathscr{A}^{\mathsf{op}} \times \mathscr{B} \longrightarrow \mathsf{Optic}_{\mathscr{A},\mathscr{B}}$$

Lenses arise when $\mathcal{M} = \mathcal{A} = \mathcal{B}$ and both the monoidal structure and the actions are given by the cartesian product

$$\int^{M} \mathscr{M}(A, M \times A') \times \mathscr{M}(M \times B', B) \cong \mathscr{M}(A, A') \times \mathscr{M}(A \times B', B)$$

Optics, functorially

The 1-cells in the bicategory $\textbf{Optic}_{\mathscr{A},\mathscr{B}}$ are pairs of coparametrised, respectively parametrised morphisms

$$(M, f : A \longrightarrow M \cdot A', g : M \cdot B' \longrightarrow B)$$

explicitly keeping track of the residual, without constraints (which now live in the 2-cells of $Optic_{\mathcal{A},\mathcal{B}}$)

The functors **Para** : \mathscr{M} -**Act**₁ \longrightarrow **Bicat** and **CoPara** : \mathscr{M} -**Act**_c \longrightarrow **Bicat** consequently induce a pseudofunctor [B-Pantelimon'24]

$$\textbf{Optic}: \mathscr{M}\text{-}\textbf{Act}_{c}\otimes \mathscr{M}\text{-}\textbf{Act}_{l} \longrightarrow \textbf{Bicat}$$

Optics versus lenses, functorially

L

Let $\mathscr{M}=\mathscr{A}=\mathscr{B},$ with monoidal structure and $\mathscr{M}\text{-}\mathsf{actions}$ given by the cartesian product

There is a **local adjunction** between the bicategory of optics and the (discrete) bicategory of lenses [Gavranović '22]

$$\operatorname{\mathsf{Lens}}_{\mathscr{M}}((A,A'),(B,B')) \xrightarrow{\perp} \operatorname{\mathsf{Optic}}_{\mathscr{M},\mathscr{M}}((A,A'),(B,B'))$$

which becomes a bijection of homsets when restricted to the 1-category of optics.

Let $F, G : \mathscr{M} \longrightarrow \mathscr{M}$ be costrong, respectively strong functors

Then there is a **morphism of adjunctions** given by Lens(F, G) and Optic(F, G)[B-Pantelimon'24]

$$\operatorname{\mathsf{Lens}}_{\mathscr{M}}((A, A'), (B, B')) \xrightarrow{\perp} \operatorname{\mathsf{Optic}}_{\mathscr{M}, \mathscr{M}}((A, A'), (B, B')) \xrightarrow{} \operatorname{\mathsf{Optic}}_{\mathscr{H}, \mathscr{M}}((FA, GA'), (FB, GB')) \xrightarrow{\perp} \operatorname{\mathsf{Optic}}_{\mathscr{M}, \mathscr{M}}((FA, GA'), (FB, GB'))$$

Optics, 2-functorially

Dependent optics [Vertechi'22] generalise (mixed) optics, replacing the actions of the monoidal category \mathscr{M} by a pair of pseudofunctors

 $\mathbf{B^{op}} \longrightarrow \mathbf{Cat}$

where **B** is a bicategory (taking **B** to be the delooping of \mathcal{M} recovers usual optics)

Our previous **Optic** construction **extends to dependent optics** when lax and colax \mathcal{M} -morphisms are replaced by lax and colax natural transformations.

Concluding: open problems

- Better understand optics properties deriving from their inherent fibrational nature
- Instantiate **Optic**(*F*, *G*) to various classes of optics (prisms, traversables, etc.); gain more intuition on these
- Find (if any) connections with monad-comonad interaction laws

Thank you for your attention!