Optics, functorially

Adriana Balan Silviu-George Pantelimon
National University of Science and Technology POLITEHNICA Bucharest

CMCS 2024, Luxembourg

Motivation

- Monads: model notions of computations [Moggi'89,'91]
- Monad transformers: combine computational effects [Liang-Hudak-Jones'95, Moggi'97, Benton-Hughes-Moggi'00]
- Lenses: bidirectional (bx) transformations (view-update of databases) (get : $A \longrightarrow B$, put : $A \times B^{\prime} \longrightarrow A^{\prime}$) [Oles'82]
- Lens transformers?
- More generally, (mixed) optics as bx transformations
Features: modularity, compositionality Applications: game theory, machine learning, database systems Therefore ... what about optics transformers?

Name	Description	Actions	Base
Adapter	$\mathbf{C}(S, A) \otimes \mathbf{D}(B, T)$	$\left(\right.$ Optic $\left._{\text {id, id }}\right)$	\mathcal{V}, \otimes
Lens	$\mathbf{C}(S, A) \times \mathbf{D}(S \bullet B, T)$	$\left(\right.$ Optic $\left._{\times, \bullet}\right)$	\mathcal{W}, \times
Monoidal lens	$\mathbf{C C o m}(S, A) \times \mathbf{C}(\mathcal{U} S \otimes B, T)$	$\left(\right.$ Optic $\left._{\otimes, u \times}\right)$	\mathcal{W}, \times
Algebraic lens	$\mathbf{C}(S, A) \times \mathbf{D}(\Psi S \bullet B, T)$	$\left(\right.$ Optic $\left._{u \times, u}\right)$	\mathcal{W}, \times
Monadic lens	$\mathcal{W}(S, A) \times \mathcal{W}(S \times B, \Psi T)$	$\left(\right.$ Optic $\left._{\times, \times}\right)$	\mathcal{W}, \times
Linear lens	$\mathbf{C}(S,[B, T] \bullet A)$	$\left(\right.$ Optic $\left._{\bullet}, \otimes\right)$	\mathcal{V}, \otimes
Prism	$\mathbf{C}(S, T \bullet A) \times \mathbf{D}(B, T)$	Optic $\left._{\bullet},+\right)$	\mathcal{W}, \times
Coalg. prism	$\mathbf{C}(S, \Theta T \bullet A) \times \mathbf{D}(B, T)$	$\left(\right.$ Optic $\left._{u} \bullet, u+\right)$	\mathcal{W}, \times
Grate	$\mathbf{D}([S, A] \bullet B, T)$	$\left(\right.$ Optic $\left.\left._{f},\right\}, \bullet\right)$	\mathcal{V}, \otimes
Glass	$\mathbf{C}(S \times[[S, A], B], T)$	$\left(\right.$ Optic $\left.\left._{\times[},\right], \times[],\right)$	\mathcal{W}, \times
Affine traversal	$\mathbf{C}(S, T+A \otimes\{B, T\})$	$\left(\right.$ Optic $\left._{+\otimes,+\otimes}\right)$	\mathcal{W}, \times
Traversal	$\mathcal{V}\left(S, \sum^{n} A^{n} \otimes\left[B^{n}, T\right]\right)$	$\left(\right.$ Optic $\left._{\text {Pw,Pw }}\right)$	\mathcal{V}, \otimes
Kaleidoscope	$\sum_{n}, \mathcal{V}\left(\left[A^{n}, B\right],\left[S^{n}, T\right]\right)$	$\left(\right.$ Optic $\left._{\text {App,App }}\right)$	\mathcal{V}, \otimes
Setter	$\mathcal{V}([A, B],[S, T])$	$\left(\right.$ Optic $\left._{\text {evev }}\right)$	\mathcal{V}, \otimes
Fold	$\mathcal{V}(S, \mathcal{L} A)$	$\left(\right.$ Optic $\left._{\text {Foldable,* }}\right)$	\mathcal{V}, \otimes

Table of optics [Clarke et al. '24]

Monoidal categories

Monoidal category: a category \mathscr{M} equipped with a tensor product (bifunctor)

$$
\mathscr{M} \times \mathscr{M} \longrightarrow \mathscr{M},(M, N) \mapsto M \otimes N
$$

and a unit object I, such that \otimes is associative and unital up to coherent isomorphism

Examples

- Any category \mathscr{M} with finite (co)products
- Endofunctors $[\mathscr{A}, \mathscr{A}]$, with functor composition
- Presheaves $\left[\mathscr{A}^{\text {op }}\right.$, Set $]$ over a (small) category \mathscr{A}, with Day convolution
- The Eilenberg-Moore category of algebras of a commutative monad on a monoidal category

Actegories

[Beńabou'67, McCrudden'00, Capucci-Gavranović'22]
$(\mathscr{M}, \otimes, I)$ monoidal category
\mathscr{M}-actegory: a category \mathscr{A} equipped with an action (bifunctor)

$$
\mathscr{M} \times \mathscr{A} \longrightarrow \mathscr{A},(M, A) \mapsto M \cdot A
$$

associative and unital up to coherent isomorphism

$$
(M \otimes N) \cdot A \cong M \cdot(N \cdot A), I \cdot A \cong A
$$

Examples

- Any monoidal category \mathscr{M} acts on itself via the tensor product
- For any category $\mathscr{A},[\mathscr{A}, \mathscr{A}]$ acts on \mathscr{A} via functor application
- The Kleisli category of a strong monad on a monoidal category

Actegories

Lax \mathscr{M}-morphism: functor $F: \mathscr{A} \longrightarrow \mathscr{B}$ between \mathscr{M}-actegories, endowed with natural transformation st : $M \cdot F A \longrightarrow F(M \cdot A)$ (strength), compatible with the \mathscr{M}-actions

Example. If \mathscr{M} is a cartesian category acting on itself, then an \mathscr{M}-lax endofunctor $\mathscr{M} \longrightarrow \mathscr{M}$ is precisely a strong functor.

Remark. A lax \mathscr{M}-morphism structure on an endofunctor F on an \mathscr{M}-actegory is the same as a lifting of the \mathscr{M}-action to $\operatorname{Coalg}(F)$, such that the forgetful functor becomes strict \mathscr{M}-morphism (strength is identity)

Colax \mathscr{M}-morphism: lax \mathscr{M}-morphism between opposite actegories. A colax \mathscr{M}-morphism F comes equipped with a costrength cst : $F(M \cdot A) \longrightarrow M \cdot F A$

Example. Let \mathscr{M} be a cartesian category acting on itself. An endofunctor on \mathscr{M} is a colax \mathscr{M}-morphism (also known as costrong functor) iff it is copointed [B-Pantelimon'24]
(Co)Lax \mathscr{M}-transformation: natural transformation between (co)lax \mathscr{M}-morphisms, compatible with their (co)strengths

The Para construction

[Wood'76, Hermida-Tennent'12, Fong-Spivak-Tuyéras'19, Capucci-Gavranović-Hedges'20]

Let \mathscr{A} be an \mathscr{M}-actegory
Para (\mathscr{A}) : bicategory which "adds parameters" to \mathscr{A}

- the objects are those of \mathscr{A}
- the morphisms are M-parametrised morphisms $(M \in \mathscr{M}, f: M \cdot A \longrightarrow B)$
- 2-cells are given by reparametrisation

Remarks

- The construction \mathscr{M} - Act/ \longrightarrow Bicat, $\mathscr{A} \mapsto \operatorname{Para}(\mathscr{A})$ is functorial with respect to lax \mathscr{M}-morphisms.
- There is a 2-opfibration Para $(\mathscr{A}) \longrightarrow \mathbf{B} \mathscr{M}$ over the delooping of \mathscr{M}, by projecting parameters.
- Dually, $\operatorname{CoPara}(\mathscr{A})=\operatorname{Para}\left(\mathscr{A}^{\text {op }}\right)$ gives a functor \mathscr{M} - Act $_{c} \longrightarrow$ Bicat and a 2-fibration over B \mathscr{M}

Optics

Informally: optics are coupled pairs of coparametrised and parametrised morphisms, but with externally unobservable joint parameter

Let \mathscr{A}, \mathscr{B} be two \mathscr{M}-actegories
A (mixed) optic from (A, B) with the focus on $\left(A^{\prime}, B^{\prime}\right)$ is an element of the coend

$$
\text { Optic }_{\mathscr{A}, \mathscr{B}}\left((A, B),\left(A^{\prime}, B^{\prime}\right)\right)=\int^{M} \mathscr{A}\left(A, M \cdot A^{\prime}\right) \times \mathscr{B}\left(M \cdot B^{\prime}, B\right)
$$

where $A, A^{\prime} \in \mathscr{A}$ and $B, B^{\prime} \in \mathscr{B}$
Optics are arrows of a category Optic $_{\mathscr{A}, \mathscr{B}}$, which comes with an identity on objects fully faithful functor

$$
\mathscr{A}^{\mathrm{op}} \times \mathscr{B} \longrightarrow \text { Optic }_{\mathscr{A}, \mathscr{B}}
$$

Lenses arise when $\mathscr{M}=\mathscr{A}=\mathscr{B}$ and both the monoidal structure and the actions are given by the cartesian product

$$
\int^{M} \mathscr{M}\left(A, M \times A^{\prime}\right) \times \mathscr{M}\left(M \times B^{\prime}, B\right) \cong \mathscr{M}\left(A, A^{\prime}\right) \times \mathscr{M}\left(A \times B^{\prime}, B\right)
$$

Optics, functorially

Optic $\mathscr{A}_{\mathscr{A}, \mathscr{B}}$ as a bicategory: [Braithwaite et al.'21]

The 1-cells in the bicategory Optic $_{\mathscr{A}, \mathscr{B}}$ are pairs of coparametrised, respectively parametrised morphisms

$$
\left(M, f: A \longrightarrow M \cdot A^{\prime}, g: M \cdot B^{\prime} \longrightarrow B\right)
$$

explicitly keeping track of the residual, without constraints (which now live in the 2-cells of Optic $\mathscr{A}_{\mathscr{A}}$)

The functors Para : \mathscr{M} - Act ${ }_{l} \longrightarrow$ Bicat and CoPara : \mathscr{M} - Act $_{c} \longrightarrow$ Bicat consequently induce a pseudofunctor [B-Pantelimon'24]

Optic : $\mathscr{M}^{- \text {Act }_{c}} \otimes \mathscr{M}-$ Act $_{l} \longrightarrow$ Bicat

Optics versus lenses, functorially

Let $\mathscr{M}=\mathscr{A}=\mathscr{B}$, with monoidal structure and \mathscr{M}-actions given by the cartesian product

There is a local adjunction between the bicategory of optics and the (discrete) bicategory of lenses [Gavranović '22]

$$
\operatorname{Lens}_{\mathscr{M}}\left(\left(A, A^{\prime}\right),\left(B, B^{\prime}\right)\right) \underset{\rightleftarrows}{\rightleftarrows} \text { Optic }_{\mathscr{M}, \mathscr{M}}\left(\left(A, A^{\prime}\right),\left(B, B^{\prime}\right)\right)
$$

which becomes a bijection of homsets when restricted to the 1-category of optics.
Let $F, G: \mathscr{M} \longrightarrow \mathscr{M}$ be costrong, respectively strong functors
Then there is a morphism of adjunctions given by $\operatorname{Lens}(F, G)$ and $\operatorname{Optic}(F, G)$ [B-Pantelimon'24]

Optics, 2-functorially

Dependent optics [Vertechi'22] generalise (mixed) optics, replacing the actions of the monoidal category \mathscr{M} by a pair of pseudofunctors

$$
\mathrm{B}^{\mathrm{OP}} \longrightarrow \text { Cat }
$$

where \mathbf{B} is a bicategory (taking \mathbf{B} to be the delooping of \mathscr{M} recovers usual optics)
Our previous Optic construction extends to dependent optics when lax and colax \mathscr{M}-morphisms are replaced by lax and colax natural transformations.

Concluding: open problems

- Better understand optics properties deriving from their inherent fibrational nature
- Instantiate $\operatorname{Optic}(F, G)$ to various classes of optics (prisms, traversables, etc.); gain more intuition on these
- Find (if any) connections with monad-comonad interaction laws

Thank you for your attention!

