Graded Semantics and Graded Logics for Eilenberg-Moore Coalgebras

Jonas Forster Lutz Schröder Paul Wild Harsh Beohar Sebastian Gurke Karla Messing

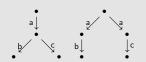
FAU Erlangen-Nürnberg University of Sheffield Universität Duisburg-Essen

CMCS 2024, Luxembourg, 6.4.2024

Context

Behavioural Equivalence

Often too fine grained



Process Semantics

Linear Time-Branching Time Spectrum van Glabbeek '90

Graded Semantics

Coalgebraic framework for logics

Milius et al. '15

$$X \xrightarrow{\gamma} GX \xrightarrow{\alpha} M_1X$$



Automaton Theory

Behavioural equivalence

 \neq

Language semantics

3/16

Generalized Powerset Construction

EM-Law

Eilenberg-Moore distributive law $\zeta: TF \Rightarrow FT$, natural transformation compatible with the structure of T

Logic

FM-Semantics

Determinization of coalgebra $\gamma: X \to FTX$:

$$\gamma^{\#} : TX \xrightarrow{T\gamma} TFTX \xrightarrow{\zeta TX} FTTX \xrightarrow{F\mu_X} FTX$$

Behavioural equivalence in $\gamma^{\#} \approx \text{Language semantics}$ (nondeterministic, weighted, probabilistic automata)

Silva et al. '10

Introduction Graded Semantics Logic Quantitative Conclusion Forster et. al 4/16

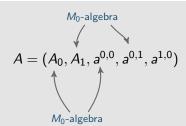
Graded Monads

Graded Monads M

- Functors $M_n : \mathbf{C} \to \mathbf{C}$ for $n \in \mathbb{N}$
- Multiplications μ^{ij} : $M_i M_j \Rightarrow M_{i+j}$
- Unit $\eta: Id \Rightarrow M_0$
- + monad laws (with indices)

M_n -Algebras

- Carriers A_k for $k \le n$
- Structures a^{ij} : $M_i A_j \Rightarrow A_{i+j}$
- + algebra laws (with indices)



Introduction Graded Semantics Logic Quantitative Conclusion Forster et. al 5/16

EM-Laws Define Graded Monads

Graded Monad M_G

- $M_n = G^n$
- All natural transformations identity

Captures (finite-depth) Behavioural equivalence.

Graded Monad \mathbb{M}_{ζ}

- $M_n = F^n T$
- Multiplications defined by ζ
- η inherited from T

Captures EM-Semantics.

Graded Semantics

Definition

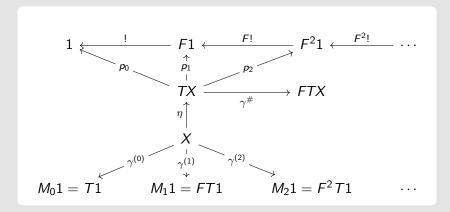
Graded semantics ($\mathbb{M}, \alpha \colon G \Rightarrow M_1$)

For $\gamma: X \to GX$ define inductively $\gamma^{(k)}: X \to M_k 1$:

$$\gamma^{(0)}: X \xrightarrow{\eta} M_0 X \xrightarrow{M_0!} M_0 1$$

$$\gamma^{(k+1)} \colon X \xrightarrow{\alpha \cdot \gamma} M_1 X \xrightarrow{M_1 \gamma^{(k)}} M_1 M_k 1 \xrightarrow{\mu^{1k}} M_{k+1} 1$$

Graded Semantics and Terminal Chains



Proposition

If $T1 \cong 1$, then graded semantics coincides with (finite-depth) EM-Semantics.

Depth-1 Graded Monads

Definition

 \mathbb{M} is *depth-1* if the following diagram is a coequalizer:

$$M_1 M_0 M_0 \xrightarrow[\mu^{10} M_0]{M_1 \mu^{00}} M_1 M_0 \xrightarrow{\mu^{10}} M_1$$

Equivalent: Depth-1 algebraic theory

Lemma

If \mathbb{M} depth-1

$$\Rightarrow$$
 $(M_n1, M_{n+1}1, \mu^{0,n}, \mu^{0,n+1}, \mu^{1,n})$ is free over its 0-part.

9/16

Coalgebraic Logic

Constants Modalities Syntactic Components given by $\mathcal{L} = (\Theta, \mathcal{O}, \Lambda)$ Propositional Operators

•
$$\theta \in \Theta$$
 $\hat{\theta} : 1 \to \Omega$

•
$$p \in \mathcal{O}$$
 $[p]: \Omega^n \to \Omega$

•
$$\lambda \in \Lambda$$
 $[\![\lambda]\!]: G\Omega \to \Omega$

Semantics for a coalgebra $\gamma \colon X \to GX$

$$[\![\lambda\phi]\!]_{\gamma}\colon X\xrightarrow{\gamma} GX\xrightarrow{G[\![\phi]\!]_{\gamma}} G\Omega\xrightarrow{[\![\lambda]\!]}\Omega$$

Graded Logics

Definition

 \mathcal{L} is a graded logic if

- Ω carries an M_0 -algebra (Ω, o)
- $\llbracket p \rrbracket : \Omega^n \to \Omega$ algebra homomorphism
- $[\![\lambda]\!] = f \circ \alpha$ $(\Omega, \Omega, o, o, f)$ is an M_1 -algebra

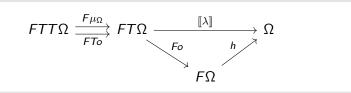
Theorem

M depth-1 graded monad, \mathscr{L} graded logic

 $\Rightarrow \mathscr{L}$ invariant for (α, \mathbb{M})

Introduction Graded Semantics Logic Quantitative Conclusion Forster et. al 11/16

Characterizing Modalities for \mathbb{M}_{ζ}

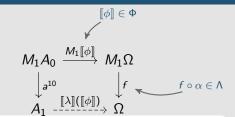


Theorem

Graded modal operators $[\![\lambda]\!]: FT\Omega \to \Omega$ correspond to algebra-homomorphisms $h: \tilde{F}(\Omega, o) \to (\Omega, o)$.

Depth-0 separation

 $\hat{ heta}^* \colon M_0 1 o \Omega$ jointly injective



Depth-1 separation

 \forall A canonical (free over $(-)_0$)

 $\forall \ \Phi \subseteq A_0 \to \Omega$ jointly injective, closed under \mathscr{O}

 $\Rightarrow [\![\lambda]\!]([\![\phi]\!])$ jointly injective

Theorem

If $\mathscr L$ is depth-0 and depth-1 separating, then $\mathscr L$ is expressive.

$$\mathscr{L} = (\Theta, \mathscr{O}, \Lambda)$$
 graded logic for (id, \mathbb{M}_{ζ}) on FT -coalgebras

$$\Lambda' = \{h \colon F\Omega \to \Omega \mid h \circ Fo \in \Lambda\}$$

 $\mathscr{L}' = (\Theta, \mathscr{O}, \Lambda')$ graded logic for (id, \mathbb{M}_F) on F-coalgebras

Proposition

If \mathcal{L}' is depth-1 separating, then \mathcal{L} is depth-1 separating,

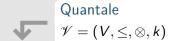
14 / 16

T arbitrary, $F = 2 \times (-)^{\Sigma}$, $\Omega = 2$

 Λ' : $\langle \top \rangle$ first projection, $\langle \sigma \rangle$ second projection (for $\sigma \in \Sigma$)

- Morphisms in EM(T) √ \Rightarrow Modal operators in Λ are invariant
- Depth-1 separating for M_F √ \Rightarrow $(\emptyset, \emptyset, \Lambda)$ is depth-1 separating

\mathcal{V} -enriched Categories



(V, <) complete lattice

 (V, \otimes, k) monoid

$$(\bigvee_I u_i) \otimes v = \bigvee_I (u_i \otimes v)$$

Example: Met

 M_n1 metric spaces,

 $[\![\phi]\!]: X \to [0,1]$

Instances

- (hemi-/pseudo-)metric spaces
- preorders (posets/setoids/sets)

Introduction Graded Semantics Logic Quantitative **Conclusion** Forster et. al 16/16

Conclusion

What We Showed

- Graded semantics can capture EM-Semantics
- Invariance and expressivity follow from general results
- Quantalic generality

Future Work

- Fixpoints ⇒ relation to regular expressions
- Quantitative Kleisli semantics