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A coalgebraic motivation

Given a (deterministic complete) automaton over Σ

(Q, i ∈ Q, F ⊂ Q, δ : Q × Σ −→ Q)

if we forget the initial state we can represent it as a coalgebra for the endofunctor
F (−) = Ω× (−)Σ

Q
(δ⊣,χF )−−−−−→ Ω× QΣ

by using the exponential QΣ, the subset classifier Ω := {⊥,⊤} and the
characteristic function χF : Q −→ Ω defined by χF (q) = ⊤ if q ∈ F and
χF (q) = ⊥ otherwise.

Exponentials and subobjects classifiers are typical of toposes.
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Toposes

Definition

An (elementary) topos is a category E with

finite limits, in particular a terminal object 1

exponentials: for all objects A and B, an object BA such that

E(A× X ,B) ∼= E(X ,BA) natural in A, B, X

a subobject classifier i.e. ⊤ : 1 −→ Ω such that for each object A and
subobject S ↪−→ A, there exists a unique morphism χS : A −→ Ω, such that

S 1

A Ω

!

⊤

χS

⌟

i.e. Sub(A) ∼= E(A,Ω) naturally in A

A theorem ensures that toposes also have finite colimits (in particular an initial
object ∅).
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G -sets toposes (another motivation)

Set is a topos with BA := {functions A −→ B} and Ω := {⊥,⊤}

Example

For a discrete group G , the category G Set of G -sets and equivariant functions is
a topos with

exponential of (B, ·) to the (A, ·) the set BA with the action, for all
f : A −→ B, g ∈ G

(f · g)(x) = f (x · g−1) · g

so that f is equivariant iff a fixed point of this action

subobject classifier the set Ω := {⊥,⊤} with trivial action
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Connected objects

In any topos we have unions and intersections of subobjects, where S ≤ A means
“S is a subobject of A”:

Definition
Let E be a topos and A any of its objects.

1 S ≤ A is complemented if there exists C ≤ A s.t. S ∪ C = A and S ∩ C = ∅.
2 A is connected if it admits exactly two complemented subobjects (∅ and A)

Example

A G -set A is connected iff non-empty transitive i.e. is an orbit.
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Atomic toposes

Any G -set can be decomposed into a sum of its orbits i.e. every object of G Set is
a coproduct of connected objects

Definition
A topos E is atomic if

it is locally connected i.e. every object is a coproduct of connected objects;

it is Boolean i.e. every subobject is complemented.

In an atomic topos, connected objects are atoms i.e. they have no proper
subobjects.

Example

G Set are atomic.
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Internal monoids and W-toposes

An internal monoid in a topos E is an object M endowed with

a multiplication morphism m : M ×M −→ M;

a unit global element i.e. a morphism e : 1 −→ M

satisfying associativity and unitality. We denote by Mon(E) the category of
internal monoid and internal monoid morphisms.

Proposition

For any object A of a topos E , AA is canonically endowed with an internal monoid
structure.

Definition

A W-topos is a topos admitting free monoids (Σ∗,mΣ, εΣ) for all Σ i.e. for all
object Σ and internal monoid M we have a natural isomorphism

E(Σ,M) ∼= Mon(E)(Σ∗,M)

Toposes G Set are W-toposes because they have countable coproducts:
Σ∗ :=

∑
n∈N Σn.
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Languages and automata in a W-topos

We now work in a W-topos E and fix an alphabet Σ.

A language is any subobject L ≤ Σ∗, and a Σ-automaton A is the data of

(Q, 1
i−→ Q, Q

χF−−→ Ω, Q × Σ
δ−→ Q)

and to define the language recognised by A we use

E(Q × Σ,Q) E(Σ,QQ) Mon(E)(Σ∗,QQ) E(Σ∗,QQ) E(Q × Σ∗,Q)

δ δ∗

currying free monoids forget uncurrying

Definition

The language L(A) recognised by A = (Q, i ,F , δ) is defined by its characteristic
morphism

Σ∗ ∼= 1× Σ∗ i×Σ∗

−−−→ Q × Σ∗ δ∗−→ Q
χF−−→ Ω

In Set it is really w ∈ L(A) iff δ∗(i ,w) ∈ F .
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Categories of Automata

Our goal now is to compute “the” “minimal” automaton of a given language L
(c.f. Colcombet and Petrişan’s 2020 “Automata minimization: a functorial
approach”).

We define automaton morphisms α : A −→ A′ = (Q ′, i ′, χF ′ , δ′) as morphisms
α : Q −→ Q ′ of E such that the following diagrams commute:

Q × Σ Q

Q ′ × Σ Q ′

α×Σ

δ

α

δ′

and

Q

1 Ω

Q ′

α

χF

i ′

i

χF ′

The existence of an automaton morphism α : A −→ A′ entails L(A) = L(A′).

Definition

We denote by Auto(L) the category of L-automata (i.e. that recognise L) and
automaton morphisms.
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Minimal object of a category with a factorisation system

Definition

In a category C endowed with a factorisation system (E ,M), we say an object X
divides an object Y if there exists a span

X ←e∈E←−− Z
m∈M
↪−−−→ Y

in C . An object is minimal if it divides any object of C .

If (E ,M) = (epi,mono), then “dividing” is “being a subquotient”

Proposition ([CP20, Lemma 2.3])

If moreover C admits initial ∅ and terminal 1 objects, then the factorisation of the

unique ∅ !−→ 1 :

∅ e∈E−−→→ Min
m∈M
↪−−−→ 1

provides a minimal object Min.
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Minimal automaton

Lemma

The (epi,mono) factorisation system of E lifts to Auto(L).

Lemma

Auto(L) admits initial Init(L) = (Σ∗, . . . ) and terminal Term(L) = (ΩΣ∗
, . . . )

automata, and the unique morphism Init(L)
!−→ Term(L) is given by

(mΣχL)
⊣ : Σ∗ −→ ΩΣ∗

adjunct of Σ∗ × Σ∗ mΣ−−→ Σ∗ χL−→ Ω

In Set, (mΣχL)
⊣(u) = {v ∈ Σ∗|uv ∈ L} = u−1L.

Corollary

The factorisation of the unique Init(L)
!−→ Term(L):

Init(L)
e epic−−−−→→ Min(L)

m monic
↪−−−−−→ Term(L)

provides an automaton Min(L) that is a subquotient of every other L-automaton.

V. Iwaniack (LJAD, UniCA) Automata in W-Toposes CMCS 2024, April 6 11 / 13



Minimal automaton

Lemma

The (epi,mono) factorisation system of E lifts to Auto(L).

Lemma

Auto(L) admits initial Init(L) = (Σ∗, . . . ) and terminal Term(L) = (ΩΣ∗
, . . . )

automata, and the unique morphism Init(L)
!−→ Term(L) is given by

(mΣχL)
⊣ : Σ∗ −→ ΩΣ∗

adjunct of Σ∗ × Σ∗ mΣ−−→ Σ∗ χL−→ Ω

In Set, (mΣχL)
⊣(u) = {v ∈ Σ∗|uv ∈ L} = u−1L.

Corollary

The factorisation of the unique Init(L)
!−→ Term(L):

Init(L)
e epic−−−−→→ Min(L)

m monic
↪−−−−−→ Term(L)

provides an automaton Min(L) that is a subquotient of every other L-automaton.

V. Iwaniack (LJAD, UniCA) Automata in W-Toposes CMCS 2024, April 6 11 / 13



Minimal automaton

Lemma

The (epi,mono) factorisation system of E lifts to Auto(L).

Lemma

Auto(L) admits initial Init(L) = (Σ∗, . . . ) and terminal Term(L) = (ΩΣ∗
, . . . )

automata, and the unique morphism Init(L)
!−→ Term(L) is given by

(mΣχL)
⊣ : Σ∗ −→ ΩΣ∗

adjunct of Σ∗ × Σ∗ mΣ−−→ Σ∗ χL−→ Ω

In Set, (mΣχL)
⊣(u) = {v ∈ Σ∗|uv ∈ L} = u−1L.

Corollary

The factorisation of the unique Init(L)
!−→ Term(L):

Init(L)
e epic−−−−→→ Min(L)

m monic
↪−−−−−→ Term(L)

provides an automaton Min(L) that is a subquotient of every other L-automaton.

V. Iwaniack (LJAD, UniCA) Automata in W-Toposes CMCS 2024, April 6 11 / 13



Internal Nerode Congruence

Init(L)
e epic−−−→→ Min(L)

m monic
↪−−−−−→ Term(L)

is the factorisation of Init(L)
!−→ Term(L) and is done at the stage of the states

objects so that the factorisation of (mΣχL)
⊣:

Σ∗ −→→ Im((mΣχL)
⊣) ↪−→ ΩΣ∗

provides the states object Im((mΣχL)
⊣) of Min(L):

Definition

The Nerode quotient Σ∗
/≡L

of L is the states object of Min(L) and by definition

Σ∗
/≡L

:= Im((mΣχL)
⊣)

Because Min(L) is a subquotient of any L-automaton A = (Q, . . . ) then

Proposition

Σ∗
/≡L

is a subquotient of the state object Q of any L-automaton A.
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Myhill-Nerode Theorem for Decomposition-Finiteness

We generalise orbit-finiteness:

Definition
An object of a topos is decomposition-finite if it is a finite sum of connected
objects.

Lemma
If the topos E is atomic, decomposition-finiteness is stable under taking
subquotients.

Therefore if there exists an L-automaton A = (Q, . . . ) with decomposition-finite
Q, then because Σ∗

/≡L
is a subquotient of Q, Σ∗

/≡L
is decomposition-finite too:

Theorem
In an atomic W-topos E , a language L is recognised by a decomposition-finite
automaton (is “decomposition-regular”) iff Σ∗

/≡L
is decomposition-finite.

We can change the finiteness conditions and get other Myhill-Nerode type
theorems (e.g. Kuratowski-finiteness in Boolean W-toposes).

V. Iwaniack (LJAD, UniCA) Automata in W-Toposes CMCS 2024, April 6 13 / 13



Myhill-Nerode Theorem for Decomposition-Finiteness

We generalise orbit-finiteness:

Definition
An object of a topos is decomposition-finite if it is a finite sum of connected
objects.

Lemma
If the topos E is atomic, decomposition-finiteness is stable under taking
subquotients.

Therefore if there exists an L-automaton A = (Q, . . . ) with decomposition-finite
Q, then because Σ∗

/≡L
is a subquotient of Q, Σ∗

/≡L
is decomposition-finite too:

Theorem
In an atomic W-topos E , a language L is recognised by a decomposition-finite
automaton (is “decomposition-regular”) iff Σ∗

/≡L
is decomposition-finite.

We can change the finiteness conditions and get other Myhill-Nerode type
theorems (e.g. Kuratowski-finiteness in Boolean W-toposes).

V. Iwaniack (LJAD, UniCA) Automata in W-Toposes CMCS 2024, April 6 13 / 13



Myhill-Nerode Theorem for Decomposition-Finiteness

We generalise orbit-finiteness:

Definition
An object of a topos is decomposition-finite if it is a finite sum of connected
objects.

Lemma
If the topos E is atomic, decomposition-finiteness is stable under taking
subquotients.

Therefore if there exists an L-automaton A = (Q, . . . ) with decomposition-finite
Q, then because Σ∗

/≡L
is a subquotient of Q, Σ∗

/≡L
is decomposition-finite too:

Theorem
In an atomic W-topos E , a language L is recognised by a decomposition-finite
automaton (is “decomposition-regular”) iff Σ∗

/≡L
is decomposition-finite.

We can change the finiteness conditions and get other Myhill-Nerode type
theorems (e.g. Kuratowski-finiteness in Boolean W-toposes).

V. Iwaniack (LJAD, UniCA) Automata in W-Toposes CMCS 2024, April 6 13 / 13



Myhill-Nerode Theorem for Decomposition-Finiteness

We generalise orbit-finiteness:

Definition
An object of a topos is decomposition-finite if it is a finite sum of connected
objects.

Lemma
If the topos E is atomic, decomposition-finiteness is stable under taking
subquotients.

Therefore if there exists an L-automaton A = (Q, . . . ) with decomposition-finite
Q, then because Σ∗

/≡L
is a subquotient of Q, Σ∗

/≡L
is decomposition-finite too:

Theorem
In an atomic W-topos E , a language L is recognised by a decomposition-finite
automaton (is “decomposition-regular”) iff Σ∗

/≡L
is decomposition-finite.

We can change the finiteness conditions and get other Myhill-Nerode type
theorems (e.g. Kuratowski-finiteness in Boolean W-toposes).

V. Iwaniack (LJAD, UniCA) Automata in W-Toposes CMCS 2024, April 6 13 / 13


