Codensity Liftings and their Applications

Shin-ya Katsumata

Kyoto Sangyo Univeristy, Japan
6 Apr, 2024

Extending Set-constructions to Spatial Structures

Lifting Problem

Lift a construction on sets to sets with logical / spatial structures, e.g.

- sets with predicates,
- sets with binary relations,
- preordered sets,
- topological spaces,
- measurable spaces,
- metric spaces, etc...

Categorically, find \dot{F} such that (p:forgetful)

Liftings in Semantics

Liftings have been playing two major roles in semantics:
(1) Logical predicates/relations of type theories

- [Ma\&Reynolds ' 92 ,Mitchell\&Scedrov '93] Lifting CC structures
- [Hermida '93] Lifting adjunctions
- [Hasegawa '99] Lifting SMC structures and !-modality
- [Filinski '96, Larrecq+ '05, K. '05] Lifting monads

Liftings are used to interpret type constructors

$$
P\left(\tau \times \tau^{\prime}\right) \triangleq P(\tau) \dot{\times} P\left(\tau^{\prime}\right), \quad P\left(\tau \times \tau^{\prime}\right) \triangleq P(\tau) \Rightarrow P\left(\tau^{\prime}\right)
$$

(2) Bisimulations and modal logic

- [Thijs '96, Hughes\&Jacobs '04] Relational extension
- [Hermida\&Jacobs '98] Bisimulations through liftings
- [Pattinson '04, Schröder '08] Modal logic and predicate liftings
- [Baldan+ '14] Kantorovich lifting
- [Balan+ '15,Goncharov+ '23] Lifting to VCAT
- [K.+'15, Sprunger+ '18] Codensity lifting
- [Bonchi+ '18] Wasserstein lifting

Bisimulations through Liftings [Hermida\&Jacobs'98]

Coalgebraic Bisimulation

Let \dot{F} be a lifting of F (left). A \dot{F}-bisimulation on $\delta: Q \rightarrow F Q$ is a \dot{F}-coalgebra $d: S \rightarrow \dot{F} S$ such that $p d=\delta$ (right).

The standard definition of bisimulation relation looks like

$$
\begin{aligned}
\forall x, y \cdot(x, y) \in S \Longrightarrow & \left(\forall x^{\prime} \in \delta(x) \cdot \exists y^{\prime} \in \delta(y) \cdot\left(x^{\prime}, y^{\prime}\right) \in S\right) \wedge \\
& \left(\forall y^{\prime} \in \delta(y) \cdot \exists x^{\prime} \in \delta(x) \cdot\left(x^{\prime}, y^{\prime}\right) \in S\right)
\end{aligned}
$$

How does this post-fixpoint style definition arise from liftings?

Fibration

\ldots is a functor $p: \mathbb{E} \rightarrow \mathbb{B}$ admitting the inverse image operation of \mathbb{E}-objects along \mathbb{B}-morphisms:

$p: \mathbb{E} \rightarrow$ Set	\mathbb{E}-object is a set with	\mathbb{E}-morphism is a
EqRel \rightarrow Set	an equiv. relation	function preserving relation
	$f^{*}(J, Y)=\left(I,\left\{\left(i, i^{\prime}\right) \mid\left(f(i), f\left(i^{\prime}\right)\right) \in X\right\}\right)$	
EPMet \rightarrow Set	an ext. pseudometric	nonexpansive function
	$f^{*}(J, d)=\left(I, \lambda\left(i, i^{\prime}\right) \cdot d\left(f(i), f\left(i^{\prime}\right)\right)\right)$	
Top \rightarrow Set	a topology	continuous function
	$f^{*}(J, O)=\left(I,\left\{f^{-1}(U) \mid U \in O\right\}\right)$	

CLat $_{\wedge}-$ Fibration (\because Topological Functors)

Fiber Category

For a fibration $p: \mathbb{E} \rightarrow \mathbb{B}$ and $I \in \mathbb{B}$, define the fiber category \mathbb{E}_{l} by

- $\operatorname{Obj}\left(\mathbb{E}_{l}\right)=\{X \in \mathbb{E} \mid p X=I\}$
- $\mathbb{E}_{l}(X, Y)=\left\{f \in \mathbb{E}(X, Y) \mid p f=\mathrm{id}_{l}\right\}$

The inverse image operation along $f: I \rightarrow J$ extends to $f^{*}: \mathbb{E}_{J} \rightarrow \mathbb{E}_{\|}$.

CLat ${ }_{\wedge}$-Fibration

\ldots is a fibration where each \mathbb{E}_{l} is a complete lattice, and f^{*} preserves \wedge. Every CLat $_{\wedge}$-fibration is faithful (convention: $\mathbb{E}(X, Y) \subseteq \mathbb{B}(p X, p Y)$).

CLat $_{\wedge}-$ fibration	Fiber over I consists of	$X \leq Y$ holds if $Y \ldots X$
EqRel \rightarrow Set	eq. relations on I	includes
EPMet \rightarrow Set	ext. pseudometrics on I	returns smaller values than
Top \rightarrow Set	topologies on I	is coarser than

Coalgebraic Bisimulations in Fibrations

Consider

(1) a functor $F: \mathbb{B} \rightarrow \mathbb{B}$
(2) a CLat ${ }_{\wedge}-$ fibration $p: \mathbb{E} \rightarrow \mathbb{B}$
(3) a lifting $\dot{F}: \mathbb{E} \rightarrow \mathbb{E}$ of F

Proposition [Proposition 4.2, Hasuo+ '13]

There is a bijective correspondence between
(1) \dot{F}-bisimulations on $\delta: Q \rightarrow F Q$
(2) postfixpoints of $\delta^{*} \circ \dot{F}: \mathbb{E}_{Q} \rightarrow \mathbb{E}_{Q}$

The GFP $\nu\left(\delta^{*} \circ \dot{F}\right)$ is called coinductive predicate.

Coalgebraic Bisimulations in Fibrations

Consider

(1) a functor $F: \mathbb{B} \rightarrow \mathbb{B}$
(2) a CLat ${ }_{\wedge}-$ fibration $p: \mathbb{E} \rightarrow \mathbb{B}$
(3) a lifting $\dot{F}: \mathbb{E} \rightarrow \mathbb{E}$ of F

Proposition [Proposition 4.2, Hasuo+ '13]

There is a bijective correspondence between
(1) \dot{F}-bisimulations on $\delta: Q \rightarrow F Q$
(2) postfixpoints of $\delta^{*} \circ \dot{F}: \mathbb{E}_{Q} \rightarrow \mathbb{E}_{Q}$

The GFP $\nu\left(\delta^{*} \circ \dot{F}\right)$ is called coinductive predicate.
$S \subseteq \delta^{*}(\dot{F} S)$ expands to the standard bisimulation:

$$
\begin{aligned}
\forall(x, y) \in S \cdot & \left(\forall x^{\prime} \in \delta(x) \cdot \exists y^{\prime} \in \delta(y) \cdot\left(x^{\prime}, y^{\prime}\right) \in S\right) \wedge \\
& \left(\forall y^{\prime} \in \delta(y) \cdot \exists x^{\prime} \in \delta(x) \cdot\left(x^{\prime}, y^{\prime}\right) \in S\right)
\end{aligned}
$$

Part I

Codensity Lifting

Extending Set-constructions to Spatial Structures

Lifting Problem

Lift a construction on sets to sets with logical / spatial structures, e.g.

- sets with predicates,
- sets with binary relations,
- preordered sets,
- topological spaces,
- measurable spaces,
- metric spaces, etc...

Codensity liftings [K.\&Sato '15][K.\&Sato\&Uustalu '18]

... are a method to give such liftings along fibrations. They take parameters and by varying them we obtain various liftings.

Lindley and Stark's Leapfrog Method [L'so5]

- V: set of values, C : set of computations, $[-]: V \rightarrow C$
- K : set of continuations
- K@C:application of a continuation to a computation

Leapfrog Method

(1) Collect all continuations that send reducible terms to SN terms:

$$
\operatorname{Red}(\tau)^{\top}=\{K \mid \forall V \in \operatorname{Red}(\tau) \cdot K @[V] \in S N\}
$$

(2) Collect all computations that yield SN terms when connected with good continuations:

$$
\operatorname{Red}(T \tau)=\left\{C \mid \forall K \in \operatorname{Red}(\tau)^{\top} . K @ C \in S N\right\}
$$

This refines closure operators defined similarly:

- Biorthogonality techniques in linear logic [Girard '87] and classical realizability [Krivine '09]
- TT-closure operators [Pitts ’00, Abadi ’00]

Semantic TT-Lifting [k.’05]

\ldots is a method to lift a monad $\left(T, \eta,(-)^{\#}\right):$ Set \rightarrow Set

Parameter of the Lifting

A return type Ω and good return computations $\Omega \subseteq T \Omega$.

Semantic TT-Lifting

(1) Given a set I of values and good values $P \subseteq I$,
(2) Collect all continuations sending good values to good results

$$
P^{\top}=\{K: I \rightarrow T \Omega \mid \forall V \in P . K(V) \in \dot{\Omega}\}
$$

(3) Collect all computations that yield good results when connected with good continuations

$$
P^{\top \top}=\left\{C: T l \mid \forall K \in P^{\top} \cdot K^{\#}(C) \in \dot{\Omega}\right\}
$$

Semantic TT-Lifting [k.'05]

... is a method to lift a monad $\left(T, \eta,(-)^{\#}\right):$ Set \rightarrow Set

Parameter of the Lifting

A return type Ω and good return computations $\dot{\Omega} \subseteq T \Omega$.

Semantic TT-Lifting

(1) Given a set I of values and good values $P \subseteq I$,
(2) Collect all continuations sending good values to good results

$$
P^{\top}=\{K: I \rightarrow T \Omega \mid \forall V \in P . K(V) \in \dot{\Omega}\}
$$

(Collect all computations that yield good results when connected with good continuations

Semantic TT-Lifting [k.’05]

\ldots is a method to lift a monad $\left(T, \eta,(-)^{\#}\right):$ Set \rightarrow Set

Parameter of the Lifting

A return type Ω and good return computations $\dot{\Omega} \subseteq T \Omega$.

Semantic TT-Lifting

(1) Given a set l of values and good values $P \subseteq I$,
(2) Collect all continuations sending good values to good results

$$
P^{\top}=\{K: I \rightarrow T \Omega \mid \forall V \in P . K(V) \in \dot{\Omega}\}
$$

(3) Collect all computations that yield good results when connected with good continuations

TT-liftings can be done in any closed-structure preserving fibrations
Can we define ТT-liftings without closed structures?

Codensity Lifting [Monad: K.\&Sato 15 , Endofunctor: Sprunger' 18]

Fix a CLat ${ }_{\wedge}$-fibration $p: \mathbb{E} \rightarrow \mathbb{B}$, functor $F: \mathbb{B} \rightarrow \mathbb{B}$ to be lifted and assume that \mathbb{E} has and p preserves powers.

Parameter of the Lifting

consists of 1) $\Omega \in \mathbb{B}, 2) \tau: F \Omega \rightarrow \Omega$, and 3) $\dot{\Omega} \in \mathbb{E}_{\Omega}$.

$$
\left(\begin{array}{rl}
& \dot{\Omega} \\
F \Omega \underset{\tau}{\longrightarrow} \Omega
\end{array}\right)
$$

The F-algebra determines $b(\tau): F \circ p \rightarrow \operatorname{Ran}_{\dot{\Omega}} \Omega$.

Codensity Lifting

$$
\begin{array}{ll}
{[F]^{\Omega, \tau, \dot{\Omega} X} X} & \underset{\operatorname{Ran}_{\dot{\Omega}} \dot{\Omega}(X)}{ } \\
F \circ p(X) \xrightarrow[b(\tau)]{ } \operatorname{Ran}_{\dot{\Omega}} \Omega(X) & \mathbb{\downarrow ^ { p }} \\
\mathbb{B}
\end{array}
$$

Codensity Lifting of Endofunctors [Sprunger +18 , $\mathrm{K}+18$]

Codensity Lifting in Kantorovich Style

$$
[F]^{\Omega, \tau, \dot{\Omega}} X=\bigwedge_{t \in \mathbb{E}(X, \dot{\Omega})}(\tau \circ F t)^{*} \dot{\Omega} \quad(\text { using } \mathbb{E}(X, \dot{\Omega}) \subseteq \mathbb{B}(p X, \Omega))
$$

Theorem
Codensity lifting is the largest lifting that lifts τ to \mathbb{E} :

$$
[F]^{\Omega, \tau, \dot{\Omega}}=\max \{\dot{F} \in \operatorname{Lift}(F) \mid \tau \in \mathbb{E}(\dot{F} \dot{\Omega}, \dot{\Omega})\}
$$

Codensity Lifting along e : ERel \rightarrow Set

We lift the powerset functor P with:

where

$$
(2, \leq)=\{\perp \leq \top\}, \quad \operatorname{may}(U)=\top \Longleftrightarrow \top \in U
$$

Proposition

The codensity lifting satisfies

$$
[P]^{2, \text { may },(2, \leq)}(Q, S)=(P(Q),\{(U, V) \mid \forall u \in U . \exists v \in V \cdot(u, v) \in S\})
$$

Examples

Table 7 Codensity lifting of functors

	Fibration $\mathbb{E} \xrightarrow{p} \mathbb{C}$	Functor $F: \mathrm{C} \rightarrow \mathrm{C}$	obs. dom. $\mathbf{\Omega}$	Modality τ	Lifting $\boldsymbol{F}^{\mathbf{\Omega}, \boldsymbol{\tau}}$ of F
1	Pre \rightarrow Set	Powerset \mathcal{P}	$(2, \leq)$	$\diamond: \mathcal{P} 2 \rightarrow 2$	Lower preorder [14]
2	Pre \rightarrow Set	Powerset \mathcal{P}	$(2, \geq)$	$\diamond: \mathcal{P} 2 \rightarrow 2$	Upper preorder [14]
3	ERel \rightarrow Set	Powerset \mathcal{P}	(2, Eq ${ }_{2}$)	$\diamond: \mathcal{P} 2 \rightarrow 2$	(See Ex. 3.4 \& 7.4)
4	EqRel \rightarrow Set	Powerset \mathcal{P}	(2, Eq ${ }_{2}$)	$\bigcirc: \mathcal{P} 2 \rightarrow 2$	(See Ex. 3.3 \& 7.4)
5	PMet $_{1} \rightarrow$ Set	Subdistrib. $\mathcal{D}_{\leq 1}$	$\left([0,1], d_{[0,1]}\right)$	$e: \mathcal{D}_{\leq 1}[0,1] \rightarrow[0,1]$	Kantorovich metric [14]
6	PMet $_{1} \rightarrow$ Set	Powerset \mathcal{P}	$\left([0,1], d_{[0,1]}\right)$	inf : $\mathcal{P}[0,1] \rightarrow[0,1]$	Hausdorff metric (Appx. C)
7	$U^{*}\left(\right.$ PMet $\left._{1}\right) \rightarrow$ Meas	Sub-Giry $\mathcal{G}_{\leq 1}$	([0,1], $d_{[0,1]}$)	$e: \mathcal{G}_{\leq 1}[0,1] \rightarrow[0,1]$	Kantorovich metric [14]
8^{\dagger}	Pre \rightarrow Set	Powerset \mathcal{P}	$(2, \leq),(2, \geq)$	$\diamond: \mathcal{P} 2 \rightarrow 2$	Convex preorder [14]
$9{ }^{\dagger}$	EqRel \rightarrow Set	Subdistrib. $\mathcal{D}_{\leq 1}$	(2, Eq ${ }_{2}$)	$\left(\tau_{r}: \mathcal{D}_{\leq 1} 2 \rightarrow 2\right)_{r \in[0,1]}$	(For prob. bisim., see Ex. 8.15)
10^{\dagger}	Top \rightarrow Set	$2 \times()^{\Sigma}$	Sierpinski sp.	(See Ex. 6.12)	(For bisim. top., see Ex. 6.12)
11^{\dagger}	BRel \rightarrow Set ${ }^{2}$	Any functor	$\left((1,1), R_{2}\right)$	Any family	(For Λ-bisim., see Sect. 8.2)
12^{\dagger}	ESemi $_{\mathbb{R}} \rightarrow$ Vect $_{\mathbb{R}_{8}}$	$\left(\bigoplus_{a \in \Sigma}(-)\right) \oplus \mathbb{R}$	$(\mathbb{R},\|\cdot\|)$	(See Sect. 8.6)	(For bisim. seminorm, see Sect. 8.6)

The fibration $U^{*}\left(\right.$ PMet $\left._{1}\right) \rightarrow$ Meas is introduced in Sect. 8.5. $\boldsymbol{d}_{[0,1]}$ denotes the Euclidean metric on the unit interval [0,1]. The modality \diamond is introduced in Definition 2.12 . The functions $e: \mathcal{D}_{\leq 1}[0,1] \rightarrow[0,1]$ and $e: \mathcal{G}_{\leq 1}[0,1] \rightarrow[0,1]$ both return expected values. The lower, upper and convex preorders are known for powerdomains; see e.g., [36]. The function $\tau_{r}: \mathcal{D}_{\leq 1} 2 \rightarrow 2$ is introduced in Example 8.15. The examples marked with \dagger involve multiple modalities and observation domains (Sect. 6)

Codensity Lifting along $m:$ EPMet \rightarrow Set

We lift the probability distribution functor D with:

where

$$
E(\mu)=E_{x \sim \mu}[x], \quad \dot{\Omega}=([0, \infty], \lambda(x, y) \cdot|x-y|)
$$

The codensity lifting yields the Kantorovich metric / Kantorovich lifting [Baldan+'14]

$$
[D]^{[0, \infty], E, \dot{\Omega}}(Q, d)=\left(D Q, d^{K}\right)
$$

where

$$
d^{K}\left(\mu_{1}, \mu_{2}\right)=\sup _{t \in \operatorname{EPMet}((Q, d), \dot{\Omega})}\left|E_{X \sim \mu_{1}}[t(x)]-E_{x \sim \mu_{2}}[t(x)]\right|
$$

Multiple Parameter Codensity Lifting

Consider a family of lifting parameters

Multiple Parameter Codensity Lifting

$$
[F]^{\left.\left(\Omega_{\lambda}, \tau_{\lambda}, \dot{\Omega}_{\lambda}\right)\right)_{\lambda \in \Lambda} X=\bigwedge_{\lambda \in \Lambda}[F]^{\Omega_{\lambda}, \tau_{\lambda}, \dot{\Omega}_{\lambda}} X}
$$

^-Bisimulations [Bakhtiarit ' 17$]$ as Codensity Lifting

Consider $F:$ Set \rightarrow Set and a family $\tau_{\lambda}: F 2 \rightarrow 2$ of F-algebras.

Definition

A \wedge-bisimulation between $c: Q \rightarrow F Q$ and $d: R \rightarrow F R$ is $S \subseteq Q \times R$ such that for any λ and S-coherent pair $(U: F Q \rightarrow 2, V: F R \rightarrow 2)$,

$$
\tau_{\lambda} \circ F U \circ c=\tau_{\lambda} \circ F V \circ d
$$

Choose the parameter:

Theorem

S is a Λ-bisimulation over (c, d) if and only if S is a $\left[F^{2}\right]$-bisimulation.

Part II

Codensity Games for Bisimilarities

Komorida et al.
Codensity Games for Bisimilarity.
New Gener. Comput. 40(2): 403-465 (2022)

Outline of this Work

Classic result of characterizing the bisimilarity relation by a game

Can we have a similar characterization when replacing ...

© Kripke frames with Markov chains and other transition systems?
(2) bisimulation relations with simulation relations and its variants?
(0) bisimulation relations with bisimulation metrics?

Contribution

We address these generalizations in fibred category theory and show
R is below the codensity bisimilarity
R is a winning position in the codensity game

Interactive Games for Bisimulation Relations

Definition

A bisimulation relation on a Kripke frame $\delta: Q \rightarrow P(Q)$ is $S \subseteq Q^{2}$ s.t.

$$
\begin{aligned}
& \forall\left(s, s^{\prime}\right) \in S \cdot(\left(\forall u \in \delta(s) \cdot \exists v \in \delta\left(s^{\prime}\right) \cdot(u, v) \in S\right) \wedge \\
&\left(\forall v \in \delta\left(s^{\prime}\right) \cdot \exists u \in \delta(s) \cdot(u, v) \in S\right)
\end{aligned}
$$

Interactive Game [Stirling '99]

$$
\text { Spoiler } \in Q^{2} \quad \text { Duplicator } \in\{L, R\} \times Q^{2}
$$

Theorem: $(s, t) \in Q^{2}$ is a D-winning position $\Longleftrightarrow s, t$ are bisimilar

Generalizing the Interactive Game

The design of the interactive game depends on its logical definition (c.f. Ehrehfeucht-Fraïsse game).

Can we have a similar characterization when replacing ...
(1) Kripke frames to Markov chains and other transition systems?
(2) bisimulation relations to simulation relations and its variants?
(3) bisimulation relations to bisimulation metrics?

Generalizing bisimilarity games:

- General coalgebras and relation liftings [Baltag '00, Kupke '07]
- Markov chains and the bisimilarity relation [Desharnais+ '08]
- Markov chains and the bisimilarity metric [Fijalkow+ '17, König+'18]
- ... (and many more) ...

Codensity Bisimulations and Codensity Games

Can we have a similar characterization when replacing ...

- Kripke frames to Markov chains and other transition systems?
(2) bisimulation relations to simulation relations and its variants?
(0 bisimulation relations to bisimulation metrics?

Kripke frame	F-coalgebra
The bisimulation relation lifting of P	Codensity lifting
Endorelations	Objects in the total category of CLat ${ }_{\wedge}$-fibration
Interactive game	Codensity game

Codensity Games, Conceptually

$S \subseteq Q^{2}$ is a codensity bisimulation relation if and only if

$$
\forall t \in \operatorname{Test}(Q) . \operatorname{Valid}(S, t) \Longrightarrow \operatorname{Pass}(S, t)
$$

for suitable Test, Valid, Pass.

Codensity Game, Conceptually

Duplicator wins if and only if

- Spoiler gets stuck, or
- the interaction continues forever.

Codensity Bisimulations for Coalgebras

- $F: \mathbb{B} \rightarrow \mathbb{B}, \quad p: \mathbb{E} \rightarrow \mathbb{B}:$ CLat $_{\wedge}{ }_{-}$fibration
- $\Omega \in \mathbb{C}, \quad \tau: F \Omega \rightarrow \Omega, \quad \dot{\Omega} \in \mathbb{E}_{\Omega}$: a lifting parameter

Codensity Bisimulation

An $(\Omega, \tau, \dot{\Omega})$-codensity bisimulation on $\delta: Q \rightarrow F Q$ is $S \in \mathbb{E}_{Q}$ s.t.

$$
S \leq \delta^{*}\left([F]^{\Omega, \tau, \Omega} S\right)
$$

Theorem

S is an $(\Omega, \tau, \dot{\Omega})$-codensity bisimulation on $\delta: Q \rightarrow F Q$ if and only if

$$
\forall t \in \mathbb{B}(Q, \Omega) . t \in \mathbb{E}(S, \dot{\Omega}) \Longrightarrow(Q \stackrel{\delta}{\longrightarrow} F Q \xrightarrow{F t} F \Omega \xrightarrow{\tau} \Omega) \in \mathbb{E}(S, \dot{\Omega})
$$

Codensity Games

- $F: \mathbb{B} \rightarrow \mathbb{B}, \quad p: \mathbb{E} \rightarrow \mathbb{B}:$ CLat $_{\wedge}{ }_{\wedge}$ fibration
- $\Omega \in \mathbb{B}, \quad \tau: F \Omega \rightarrow \Omega, \quad \dot{\Omega} \in \mathbb{E}_{\Omega}$: a lifting parameter

Codensity Game for $\delta: Q \rightarrow F Q$ with Parameter $(\Omega, \tau, \dot{\Omega})$
Spoiler $\in \mathbb{E}_{Q} \quad$ Duplicator $\in \operatorname{Test}(Q)$

where

$$
\begin{aligned}
\operatorname{Test}(Q) & =\mathbb{B}(Q, \Omega) \\
\operatorname{Valid}(S, t) & \Longleftrightarrow t \in \mathbb{E}(S, \dot{\Omega}), \\
\operatorname{Pass}(S, t) & \Longleftrightarrow \tau \circ F t \circ \delta \in \mathbb{E}(S, \dot{\Omega})
\end{aligned}
$$

Codensity Games

- $F: \mathbb{B} \rightarrow \mathbb{B}, \quad p: \mathbb{E} \rightarrow \mathbb{B}:$ CLat $_{\wedge}{ }_{\wedge}$ fibration
- $\Omega \in \mathbb{B}, \quad \tau: F \Omega \rightarrow \Omega, \quad \dot{\Omega} \in \mathbb{E}_{\Omega}$: a lifting parameter

Theorem

The following are equivalent:
(1) $W \subseteq \mathbb{E}_{Q}$ is a set of Duplicator-winning positions.
(2) $V W$ is a $(\Omega, \tau, \dot{\Omega})$-codensity bisimulation.

Corollary (Characterization of the Bisimilarity Relation)

$R \in \mathbb{E}_{Q}$ is D-winning $\Longleftrightarrow R$ is below the $(\Omega, \tau, \dot{\Omega})$-codensity bisimilarity.

Part III

Distributive Laws for Codensity-Lifted Functors

Joint work with
Mayuko Kori, Kazuki Watanabe, Jurriaan Rot

Outline of this Work

The product of deterministic automata $\left(Q_{i}, \delta_{a, i}, F_{i}\right)$:

$$
\left(Q_{1} \times Q_{2}, \delta_{a, 1} \times \delta_{a, 2}, F_{1} \cap F_{2}\right)
$$

Product of Bisimulations

Given bisimulation relations S_{i} for each automaton, can we construct a bisimulation relation on the product automaton?

Coalgebraic Reformulation

How can we extend a construction (e.g. the product) on F-coalgebras to \dot{F}-bisimulations?

Constructions on Coalgebras

A structure behind the product construction is a distributive law

$$
\lambda: T \circ F^{2} \rightarrow F \circ T
$$

yielding a functor $T_{\lambda}: \operatorname{Coalg}(F)^{2} \rightarrow \boldsymbol{\operatorname { C o a l g }}(F)$.
How can we build
(1) a lifting \dot{T} of $T: \mathbb{B}^{2} \rightarrow \mathbb{B}$ and
(2) a lifting $\dot{\lambda}: \dot{T} \circ \dot{F}^{2} \rightarrow \dot{F} \circ \dot{T}$ of the distributive law?

Lifting Distributive Laws

Contributions

(1) To lift $T: \mathbb{B}^{N} \rightarrow \mathbb{B}$, we generalize the codensity lifting using Beohar et al.'s decomposition of codensity liftings [Beohar+ '24].
(2) We give sufficient conditions for lifting distributive laws to codensity liftings.
(3) We give a composition of winning positions of codensity games using sufficient conditions (omitted)

Beohar et al.' Decomposition, Fibrationally

Given a CLat ${ }_{\wedge}$-fibration $p: \mathbb{E} \rightarrow \mathbb{B}$ and $\Omega \in \mathbb{B}$ and $\dot{\Omega} \in \mathbb{E}_{\Omega}$, we have

We name the mediating functor arising from the change-of-base $L^{p, \Omega}$:

Remark: $L^{p, \dot{\delta}}$ is fibred $\Longleftrightarrow \dot{\Omega}$ is c-injective in the sense of Komorida

Beohar et al.' Decomposition, Fibrationally

Theorem (Beohar+ '24)

(1) $L^{p, \dot{\Omega}}: \mathbb{E} \rightarrow \operatorname{Sp}(\mathbb{B}, \Omega)$ has a right adjoint $R^{p, \dot{\Omega}}: \operatorname{Sp}(\mathbb{B}, \Omega) \rightarrow \mathbb{E}$.
(2) $F: \mathbb{B} \rightarrow \mathbb{B}$ and $\tau: F \Omega \rightarrow \Omega$ induces a fibred lifting of F :

$$
S p(F, \tau): S p(\mathbb{B}, \Omega) \rightarrow S p(\mathbb{B}, \Omega) .
$$

(3) The codensity lifting decomposes as

$$
[F]^{\Omega, \tau, \dot{\Omega}} \triangleq R^{p, \dot{\Omega}} \circ S p(F, \tau) \circ L^{p, \dot{\Omega}} \quad\left(=\bigwedge_{k \in \mathbb{E}(-, \Omega)}(\tau \circ F(p k))^{*} \dot{\Omega}\right)
$$

The Pullback Category $\operatorname{Sp}(\mathbb{B}, \Omega)$

- An object is a pair $(I \in \mathbb{B}, P \subseteq \mathbb{B}(I, \Omega))$, similar to topological space
- A morphism from (I, P) to (J, Q) is $f \in \mathbb{B}(I, J)$ such that $\forall k \in Q . k \circ f \in P$, similar to continuity

The assignment $(\mathbb{B}, \Omega) \mapsto S p(\mathbb{B}, \Omega)$ extends to a 2 -functor $S p: 1 / /$ CAT \rightarrow Fib; here 1//CAT is the lax coslice 2-category.

Sp transfers 2-categorical structures in 1//CAT to those in Fib

Heterogeneous Codensity Lifting

Based on the decomposition, we define the heterogeneous codensity lifting of $F: \mathbb{B} \rightarrow \mathbb{C}$ with $\tau: F \Omega \rightarrow \Pi$ by:

$$
[F, \tau] \triangleq R^{q, \dot{\Pi}} \circ S p(F, \tau) \circ L^{p, \dot{\Omega}}
$$

When $\mathbb{B}=\mathbb{C}=$ Set and $\mathbb{E}=\mathbb{F}=\mathbb{V}$ Cat, this is the same as topological lifting with $\Lambda=1$ [Goncharov+ '23].

Instance: N-Codensity Lifting (below $N=2$)
For $T: \mathbb{B}^{2} \rightarrow \mathbb{B}$ and $p: \mathbb{E} \rightarrow \mathbb{B}$ and $\Omega \in \mathbb{B}$ and $\dot{\Omega} \in \mathbb{E}_{\Omega}$,

$$
[T, \sigma]\left(P_{1}, P_{2}\right)=\bigwedge_{k_{1} \in \mathbb{E}\left(P_{1}, \dot{\Omega}\right), k_{2} \in \mathbb{E}\left(P_{2}, \dot{\Omega}\right)}\left(\sigma \circ T\left(p k_{1}, p k_{2}\right)\right)^{*} \dot{\Omega}
$$

Distributive Laws between Codensity Liftings

How do we obtain $\alpha:[T, \sigma] \circ[F, \tau]^{N} \rightarrow[F, \tau] \circ[T, \sigma]$?

$$
\begin{aligned}
{[T, \sigma] \circ[F, \tau]^{N} } & =R \circ S p(T, \sigma) \circ L \circ R \circ S p\left(F^{N}, \tau^{N}\right) \circ L \\
& \leq R \circ \operatorname{Sp}(T, \sigma) \circ S p\left(F^{N}, \tau^{N}\right) \circ L \\
& \rightarrow R \circ \operatorname{Sp}(F, \tau) \circ S p(T, \sigma) \circ L \\
& \leq R \circ S p(F, \tau) \circ L \circ R \circ S p(T, \sigma) \circ L=[F, \tau] \circ[T, \sigma]
\end{aligned}
$$

Theorem

The following are sufficient to lift a distributive law $\alpha: T \circ F^{N} \rightarrow F \circ T$.
(1) α is a distributive law in $1 / /$ CAT:

$$
\alpha:(T, \sigma) \circ\left(F^{N}, \tau^{N}\right) \rightarrow(F, \tau) \circ(T, \sigma)
$$

(2) The last inequality holds (equivalently, $\operatorname{Sp}(T, \sigma) \circ L X$ is approximating to $[F, \tau]$ for all X in the sense of [Komorida+ '21])

Conclusion

$$
\begin{aligned}
& {[F]^{\Omega, \tau, \dot{\Omega} X} }>\operatorname{Ran}_{\dot{\Omega}} \dot{\Omega}(X) \\
& F \circ p(X) \xrightarrow[b(\tau)]{ }>\operatorname{Ran}_{\dot{\Omega}} \Omega(X) \downarrow^{\vee} p \\
& \mathbb{B}
\end{aligned}
$$

Related Work

- Preorders on monads [K.\&Sato'13]
- Relating Computational Effects by TT-Lifting [K.'13]
- Graded lifting of monads [K.'14]
- Expressivity of quantitative modal logics [Komorida+'21]

Bonchi et al. introduced Wasserstein lifting [Bonchi+ '18; see also Sprunger+ '21].

Duality in Lifting Form

When do Wasserstein lifting and codensity lifting coincide?

Appendix: Lifting along Topological Functors

Lifting $G: \mathbb{A} \rightarrow \mathbb{B}$ along a CLat ${ }_{\wedge}{ }_{\wedge}$ fibration $p: \mathbb{E} \rightarrow \mathbb{B}$:

Parameter

... of this lifting is a family of objects $\Omega_{\lambda} \in \mathbb{B}, \dot{\Omega}_{\lambda} \in \mathbb{E}_{\Omega_{\lambda}}$ and

The lifting is the composite

$$
\mathbb{A} \xrightarrow{P} \operatorname{Sp}(\mathbb{B}, \Omega) \xrightarrow{R^{p, \dot{\Omega}}} \mathbb{E} .
$$

