Codensity Liftings and their Applications

Shin-ya Katsumata

Kyoto Sangyo Univeristy, Japan

6 Apr, 2024

Extending Set-constructions to Spatial Structures

Lifting Problem

Lift a construction on sets to sets with logical / spatial structures, e.g.

- sets with predicates,
- sets with binary relations,
- preordered sets,
- topological spaces,
- measurable spaces,
- metric spaces, etc...

Categorically, find \dot{F} such that (p:forgetful)

such that $F \circ p = p \circ \dot{F}$

Liftings in Semantics

Liftings have been playing two major roles in semantics:

- Logical predicates/relations of type theories
 - [Ma&Reynolds '92,Mitchell&Scedrov '93] Lifting CC structures
 - [Hermida '93] Lifting adjunctions
 - [Hasegawa '99] Lifting SMC structures and !-modality
 - [Filinski '96, Larrecq+ '05, K. '05] Lifting monads

Liftings are used to interpret type constructors

$$P(au imes au') \triangleq P(au) imes P(au'), \quad P(au imes au') \triangleq P(au) \Rightarrow P(au')$$

Bisimulations and modal logic

- [Thijs '96, Hughes&Jacobs '04] Relational extension
- [Hermida&Jacobs '98] Bisimulations through liftings
- Pattinson '04, Schröder '08] Modal logic and predicate liftings
- [Baldan+ '14] Kantorovich lifting
- ▶ [Balan+ '15,Goncharov+ '23] Lifting to VCAT
- [K.+ '15, Sprunger+ '18] Codensity lifting
- [Bonchi+ '18] Wasserstein lifting

Bisimulations through Liftings [Hermida&Jacobs'98]

Coalgebraic Bisimulation

Let F be a lifting of F (left). A F-bisimulation on $\delta : Q \to FQ$ is a F-coalgebra $d : S \to FS$ such that $pd = \delta$ (right).

The standard definition of bisimulation relation looks like

$$orall \mathbf{x}, \mathbf{y} \cdot (\mathbf{x}, \mathbf{y}) \in \mathcal{S} \Longrightarrow (orall \mathbf{x}' \in \delta(\mathbf{x}) . \ \exists \mathbf{y}' \in \delta(\mathbf{y}) . \ (\mathbf{x}', \mathbf{y}') \in \mathcal{S}) \land$$

 $(orall \mathbf{y}' \in \delta(\mathbf{y}) . \ \exists \mathbf{x}' \in \delta(\mathbf{x}) . \ (\mathbf{x}', \mathbf{y}') \in \mathcal{S})$

How does this post-fixpoint style definition arise from liftings?

... is a functor $p : \mathbb{E} \to \mathbb{B}$ admitting the inverse image operation of \mathbb{E} -objects along \mathbb{B} -morphisms:

Fiber Category

For a fibration $p : \mathbb{E} \to \mathbb{B}$ and $I \in \mathbb{B}$, define the fiber category \mathbb{E}_I by

•
$$\operatorname{Obj}(\mathbb{E}_l) = \{X \in \mathbb{E} \mid pX = l\}$$

•
$$\mathbb{E}_{I}(X,Y) = \{f \in \mathbb{E}(X,Y) \mid pf = \mathrm{id}_{I}\}$$

The inverse image operation along $f : I \to J$ extends to $f^* : \mathbb{E}_J \to \mathbb{E}_I$.

$\textbf{CLat}_{\wedge}\text{-Fibration}$

... is a fibration where each \mathbb{E}_l is a complete lattice, and f^* preserves \land . Every **CLat**_{\land}-fibration is faithful (convention: $\mathbb{E}(X, Y) \subseteq \mathbb{B}(pX, pY)$).

\mathbf{CLat}_{\wedge} -fibration	Fiber over I consists of	$X \leq Y$ holds if $Y \dots X$	
$\mathbf{EqRel} \to \mathbf{Set}$	eq. relations on <i>I</i>	includes	
$\textbf{EPMet} \rightarrow \textbf{Set}$	ext. pseudometrics on I	returns smaller values than	
$\textbf{Top} \rightarrow \textbf{Set}$	topologies on <i>I</i>	is coarser than	

Coalgebraic Bisimulations in Fibrations

Consider

- **1** a functor $F : \mathbb{B} \to \mathbb{B}$
- **2** a **CLat** $_{\wedge}$ -fibration $p : \mathbb{E} \to \mathbb{B}$
- **3** a lifting $\dot{F} : \mathbb{E} \to \mathbb{E}$ of F

Proposition [Proposition 4.2, Hasuo+ '13]

There is a bijective correspondence between

- \dot{F} -bisimulations on $\delta : Q \rightarrow FQ$
- **2** postfixpoints of $\delta^* \circ \dot{F} : \mathbb{E}_Q \to \mathbb{E}_Q$

The GFP $\nu(\delta^* \circ \dot{F})$ is called coinductive predicate.

Coalgebraic Bisimulations in Fibrations

Consider

- **1** a functor $F : \mathbb{B} \to \mathbb{B}$
- **2** a **CLat** $_{\wedge}$ -fibration $p : \mathbb{E} \to \mathbb{B}$
- **3** a lifting $\dot{F} : \mathbb{E} \to \mathbb{E}$ of F

Proposition [Proposition 4.2, Hasuo+ '13]

There is a bijective correspondence between

- \dot{F} -bisimulations on $\delta: Q \to FQ$
- 2 postfixpoints of $\delta^* \circ \dot{F} : \mathbb{E}_Q \to \mathbb{E}_Q$

The GFP $\nu(\delta^* \circ \dot{F})$ is called coinductive predicate.

 $S\subseteq \delta^*(\dot{F}S)$ expands to the standard bisimulation:

$$orall (\mathbf{x}, \mathbf{y}) \in \mathbf{S} . \ (orall \mathbf{x}' \in \delta(\mathbf{x}) . \ \exists \mathbf{y}' \in \delta(\mathbf{y}) . \ (\mathbf{x}', \mathbf{y}') \in \mathbf{S}) \land \ (orall \mathbf{y}' \in \delta(\mathbf{y}) . \ \exists \mathbf{x}' \in \delta(\mathbf{x}) . \ (\mathbf{x}', \mathbf{y}') \in \mathbf{S})$$

Part I

Codensity Lifting

Extending Set-constructions to Spatial Structures

Lifting Problem

Lift a construction on sets to sets with logical / spatial structures, e.g.

- sets with predicates,
- sets with binary relations,
- preordered sets,
- topological spaces,
- measurable spaces,
- metric spaces, etc...

Codensity liftings [K.&Sato '15][K.&Sato&Uustalu '18]

... are a method to give such liftings along fibrations. They take parameters and by varying them we obtain various liftings.

Lindley and Stark's Leapfrog Method [LS'05]

- V: set of values, C: set of computations, $[-]: V \rightarrow C$
- K: set of continuations
- K@C:application of a continuation to a computation

Leapfrog Method

Collect all continuations that send reducible terms to SN terms:

$$\mathsf{Red}(au)^ op = \{\mathsf{K} \mid orall \mathsf{V} \in \mathsf{Red}(au) ext{ . } \mathsf{K}@[\mathsf{V}] \in \mathsf{SN}\}$$

Collect all computations that yield SN terms when connected with good continuations:

$$\mathsf{Red}(\mathsf{T} au) = \{\mathsf{C} \mid \forall \mathsf{K} \in \mathsf{Red}(au)^{\top} : \mathsf{K}@\mathsf{C} \in \mathsf{SN}\}$$

This refines closure operators defined similarly:

- Biorthogonality techniques in linear logic [Girard '87] and classical realizability [Krivine '09]
- TT-closure operators [Pitts '00, Abadi '00]

Semantic TT-Lifting [K.'05]

... is a method to lift a monad $(T, \eta, (-)^{\#})$: Set \rightarrow Set

Parameter of the Lifting

A return type Ω and good return computations $\dot{\Omega} \subseteq T\Omega$.

Semantic ⊤⊤-Lifting

- Given a set *I* of values and good values $P \subseteq I$,
- Ollect all continuations sending good values to good results

$$P^{ op} = \{ K : I o T\Omega \mid \forall V \in P . K(V) \in \dot{\Omega} \}$$

Collect all computations that yield good results when connected with good continuations

$$P^{ op \top} = \{ C : TI \mid \forall K \in P^{ op} . K^{\#}(C) \in \dot{\Omega} \}$$

Semantic TT-Lifting [K:'05]

... is a method to lift a monad $(T, \eta, (-)^{\#})$: Set \rightarrow Set

Parameter of the Lifting

A return type Ω and good return computations $\dot{\Omega} \subseteq T\Omega$.

Semantic ⊤⊤-Lifting

- Given a set *I* of values and good values $P \subseteq I$,
- Collect all continuations sending good values to good results

$$P^{\top} = \{K : I \to T\Omega \mid \forall V \in P . K(V) \in \dot{\Omega}\}$$

Collect all computations that yield good results when connected with good continuations

$$\begin{array}{ccc} \mathsf{P}^{\top\top} & \longrightarrow & (\mathsf{P} \Rightarrow \dot{\Omega}) \Rightarrow \dot{\Omega} & & \mathsf{Pred} \\ & & & & \downarrow \\ & & & & \downarrow \\ & & & \mathsf{TI} \xrightarrow{bind} & & (I \Rightarrow T\Omega) \Rightarrow T\Omega & & & \mathsf{Set} \end{array}$$

Semantic TT-Lifting [K:'05]

... is a method to lift a monad $(T, \eta, (-)^{\#})$: Set \rightarrow Set

Parameter of the Lifting

A return type Ω and good return computations $\dot{\Omega} \subseteq T\Omega$.

Semantic ⊤⊤-Lifting

- Given a set *I* of values and good values $P \subseteq I$,
- Ollect all continuations sending good values to good results

$$P^{\top} = \{ K : I \to T\Omega \mid \forall V \in P . K(V) \in \dot{\Omega} \}$$

Collect all computations that yield good results when connected with good continuations

 $\top\top$ -liftings can be done in any closed-structure preserving fibrations

Can we define $\top \top$ -liftings without closed structures?

Codensity Lifting [Monad: K.&Sato '15, Endofunctor: Sprunger+ '18]

Fix a **CLat**_{\wedge}-fibration $p : \mathbb{E} \to \mathbb{B}$, functor $F : \mathbb{B} \to \mathbb{B}$ to be lifted and assume that \mathbb{E} has and p preserves powers.

Parameter of the Lifting

consists of 1) $\Omega \in \mathbb{B}$, 2) $\tau : F\Omega \to \Omega$, and 3) $\dot{\Omega} \in \mathbb{E}_{\Omega}$.

 $\begin{pmatrix} \Omega \\ F\Omega \xrightarrow{\tau} \Omega \end{pmatrix}$

The *F*-algebra determines $b(\tau) : F \circ p \rightarrow Ran_{\dot{\Omega}}\Omega$.

 Codensity Lifting

 $[F]^{\Omega,\tau,\dot{\Omega}}X$
 $F^{\Omega,\tau,\dot{\Omega}}X$
 $F \circ p(X)$
 $b(\tau)$
 $Ran_{\dot{\Omega}}\Omega(X)$
 \mathbb{B}

Codensity Lifting of Endofunctors [Sprunger+'18, K+'18]

Codensity Lifting in Kantorovich Style

 $[F]^{\Omega,\tau,\dot{\Omega}}X = \bigwedge_{t \in \mathbb{E}(X,\dot{\Omega})} (\tau \circ Ft)^*\dot{\Omega} \qquad (\text{using } \mathbb{E}(X,\dot{\Omega}) \subseteq \mathbb{B}(\rho X,\Omega))$

Theorem

Codensity lifting is the largest lifting that lifts τ to \mathbb{E} :

$$[F]^{\Omega,\tau,\dot{\Omega}} = \max\{\dot{F} \in Lift(F) \mid \tau \in \mathbb{E}(\dot{F}\dot{\Omega},\dot{\Omega})\}$$

Codensity Lifting along $e : ERel \rightarrow Set$

We lift the powerset functor P with:

$$[P]^{2,may,(2,\leq)} \bigcirc \mathsf{ERel} \qquad (2,\leq) \\ e \downarrow \\ P \bigcirc \mathsf{Set} \qquad (P(2) \xrightarrow{may} 2)$$

where

$$(2, \leq) = \{ \perp \leq \top \}, \quad may(U) = \top \iff \top \in U$$

Proposition

The codensity lifting satisfies

 $[P]^{2,may,(2,\leq)}(Q,S) = (P(Q), \{(U,V) \mid \forall u \in U . \exists v \in V . (u,v) \in S\})$

Examples

Table 7 Codensity lifting of functors

	Fibration $\mathbb{E} \xrightarrow{p} \mathbb{C}$	Functor $F : \mathbb{C} \to \mathbb{C}$	obs. dom. Ω	Modality τ	Lifting $F^{\Omega,\tau}$ of F
1	Pre → Set	Powerset \mathcal{P}	(2,≤)	\diamond : $P2 \rightarrow 2$	Lower preorder [14]
2	$Pre \rightarrow Set$	Powerset \mathcal{P}	(2,≥)	\diamond : $\mathcal{P}2 \rightarrow 2$	Upper preorder [14]
3	$ERel \rightarrow Set$	Powerset \mathcal{P}	(2, Eq ₂)	\diamond : $\mathcal{P}2 \rightarrow 2$	(See Ex. 3.4 & 7.4)
4	$EqRel \rightarrow Set$	Powerset \mathcal{P}	(2, Eq ₂)	\diamond : $\mathcal{P}2 \rightarrow 2$	(See Ex. 3.3 & 7.4)
5	$\mathbf{PMet}_1 \rightarrow \mathbf{Set}$	Subdistrib. $D_{\leq 1}$	$([0, 1], d_{[0,1]})$	$e:\mathcal{D}_{\leq 1}[0,1]\to[0,1]$	Kantorovich metric [14]
6	$\mathbf{PMet}_1 \rightarrow \mathbf{Set}$	Powerset \mathcal{P}	$([0, 1], d_{[0,1]})$	inf : $\mathcal{P}[0,1] \rightarrow [0,1]$	Hausdorff metric (Appx. C)
7	$U^*(\mathbf{PMet}_1) \rightarrow \mathbf{Meas}$	Sub-Giry $G_{\leq 1}$	$([0, 1], d_{[0,1]})$	$e:\mathcal{G}_{\leq 1}[0,1]\to [0,1]$	Kantorovich metric [14]
8†	$\mathbf{Pre} \rightarrow \mathbf{Set}$	Powerset P	$(2, \leq), (2, \geq)$	$\diamondsuit : \mathcal{P}2 \to 2$	Convex preorder [14]
9 [†]	$EqRel \rightarrow Set$	Subdistrib. $D_{\leq 1}$	(2, Eq ₂)	$(\tau_r : \mathcal{D}_{\leq 1}2 \rightarrow 2)_{r \in [0,1]}$	(For prob. bisim., see Ex. 8.15)
10^{\dagger}	$Top \rightarrow Set$	$2 \times (_)^{\Sigma}$	Sierpinski sp.	(See Ex. 6.12)	(For bisim. top., see Ex. 6.12)
11^{\dagger}	$\mathbf{BRel} \rightarrow \mathbf{Set}^2$	Any functor	$((1, 1), R_2)$	Any family	(For A-bisim., see Sect. 8.2)
12^{\dagger}	$\mathbf{ESemi}_{\mathbb{R}} \to \mathbf{Vect}_{\mathbb{R}}$	$(\bigoplus_{a \in \Sigma} (_)) \oplus \mathbb{R}$	(\mathbb{R}, \cdot)	(See Sect. 8.6)	(For bisim. seminorm, see Sect. 8.6)

The fibration $U^*(\mathbf{PMet}_1) \rightarrow \mathbf{Meas}$ is introduced in Sect. 8.5. $d_{[0,1]}$ denotes the Euclidean metric on the unit interval [0, 1]. The modality ϕ is introduced in Definition 2.12. The functions $e: D_{c_1}[0,1] \rightarrow \{0,1\}$ and $e: \mathcal{G}_{c_1}[0,1] \rightarrow \{0,1\}$ both return expected values. The lower, upper and convex proorders are known for powerdomains; see e.g., [36]. The function $r_1: D_{c_2}(2 \rightarrow 2)$ is introduced in Example 8.15. The examples marked with i involve multiple modalities and observation domains (Sect. 6)

Codensity Lifting along $m : \mathbf{EPMet} \rightarrow \mathbf{Set}$

We lift the probability distribution functor D with:

$$\begin{array}{c} [D]^{[0,\infty],E,\dot{\Omega}} \bigcirc \mathsf{EPMet} \\ m \\ \downarrow \\ D \bigcirc \mathsf{Set} \end{array} \qquad \begin{pmatrix} \dot{\Omega} \\ D[0,\infty] \xrightarrow{} E^{\mathsf{N}} [0,\infty] \end{pmatrix}$$

where

$$E(\mu) = E_{\mathbf{x} \sim \mu}[\mathbf{x}], \quad \dot{\Omega} = ([\mathbf{0}, \infty], \lambda(\mathbf{x}, \mathbf{y}) \cdot |\mathbf{x} - \mathbf{y}|)$$

The codensity lifting yields the Kantorovich metric / Kantorovich lifting [Baldan+'14]

$$[D]^{[0,\infty],E,\dot{\Omega}}(Q,d) = (DQ,d^{K})$$

where

$$d^{\mathsf{K}}(\mu_1,\mu_2) = \sup_{t \in \mathsf{EPMet}((Q,d),\dot{\Omega})} |E_{x \sim \mu_1}[t(x)] - E_{x \sim \mu_2}[t(x)]|$$

Multiple Parameter Codensity Lifting

Consider a family of lifting parameters

$$\begin{bmatrix} F \end{bmatrix}^{(\Omega_{\lambda},\tau_{\lambda},\dot{\Omega}_{\lambda})_{\lambda\in\Lambda}} \bigoplus \mathbb{E} \\ p \\ \downarrow \\ F \bigoplus \mathbb{B} \\ F \Omega_{\lambda} \xrightarrow{\tau_{\lambda}} \Omega_{\lambda} \\ \downarrow_{\lambda\in\Lambda} \\ \lambda \in \Lambda \\ \end{pmatrix}_{\lambda\in\Lambda}$$

Multiple Parameter Codensity Lifting $[F]^{(\Omega_{\lambda},\tau_{\lambda},\dot{\Omega}_{\lambda})_{\lambda\in\Lambda}}X = \bigwedge_{\lambda\in\Lambda} [F]^{\Omega_{\lambda},\tau_{\lambda},\dot{\Omega}_{\lambda}}X$

Λ-Bisimulations [Bakhtiari+ '17] as Codensity Lifting

Consider F : **Set** \rightarrow **Set** and a family τ_{λ} : $F2 \rightarrow 2$ of *F*-algebras.

Definition

A A-bisimulation between $c : Q \to FQ$ and $d : R \to FR$ is $S \subseteq Q \times R$ such that for any λ and S-coherent pair ($U : FQ \to 2, V : FR \to 2$),

 $\tau_{\lambda} \circ FU \circ c = \tau_{\lambda} \circ FV \circ d.$

Choose the parameter:

$$[F^{2}] \bigcirc \mathsf{BRel} \qquad \begin{pmatrix} (2, 2, Eq_{2}) \\ \downarrow^{p} \\ F^{2} \bigcirc \mathsf{Set}^{2} \qquad \begin{pmatrix} (F2, F2) \xrightarrow{(\tau_{\lambda}, \tau_{\lambda})} (2, 2) \end{pmatrix}_{\lambda \in \Lambda} \end{pmatrix}_{\lambda \in \Lambda}$$

Theorem

S is a Λ -bisimulation over (c, d) if and only if S is a $[F^2]$ -bisimulation.

Part II

Codensity Games for Bisimilarities

Komorida et al. Codensity Games for Bisimilarity. New Gener. Comput. 40(2): 403-465 (2022)

Outline of this Work

Classic result of characterizing the bisimilarity relation by a game

(s,t) are bisimilar in a Kripke frame $Q \rightarrow PQ$

(s,t) is a winning position in the interactive game

Can we have a similar characterization when replacing ...

- Kripke frames with Markov chains and other transition systems?
- Ø bisimulation relations with simulation relations and its variants?
- Isimulation relations with bisimulation metrics?

Contribution

We address these generalizations in fibred category theory and show

R is below the codensity bisimilarity

Interactive Games for Bisimulation Relations

Definition

A bisimulation relation on a Kripke frame $\delta : Q \to P(Q)$ is $S \subseteq Q^2$ s.t.

$$orall (\mathbf{s},\mathbf{s}')\in \mathbf{S} \ . \ (orall u\in\delta(\mathbf{s})\ .\ \exists v\in\delta(\mathbf{s}')\ .\ (u,v)\in \mathbf{S})\land \ (orall v\in\delta(\mathbf{s}')\ .\ \exists u\in\delta(\mathbf{s})\ .\ (u,v)\in \mathbf{S})$$

Interactive Game [Stirling '99]

Spoiler $\in Q^2$ Duplicator $\in \{L, R\} \times Q^2$ $(s, t) \underbrace{t' \in \delta(t)}_{s' \in \delta(s)} (R, s, t')$ $(s', t') \underbrace{s' \in \delta(s)}_{\vdots}$

Theorem: $(s, t) \in Q^2$ is a D-winning position $\iff s, t$ are bisimilar

Generalizing the Interactive Game

The design of the interactive game depends on its logical definition (c.f. Ehrehfeucht-Fraïsse game).

Can we have a similar characterization when replacing ...

- Kripke frames to Markov chains and other transition systems?
- Isimulation relations to simulation relations and its variants?
- Isimulation relations to bisimulation metrics?

Generalizing bisimilarity games:

- General coalgebras and relation liftings [Baltag '00, Kupke '07]
- Markov chains and the bisimilarity relation [Desharnais+ '08]
- Markov chains and the bisimilarity metric [Fijalkow+ '17, König+'18]
- ... (and many more) ...

Codensity Bisimulations and Codensity Games

Can we have a similar characterization when replacing ...

- Kripke frames to Markov chains and other transition systems?
- 2 bisimulation relations to simulation relations and its variants?
- bisimulation relations to bisimulation metrics?

Codensity Games, Conceptually

 $S\subseteq Q^2$ is a codensity bisimulation relation if and only if

$$\forall t \in Test(Q) \ . \ Valid(S, t) \Longrightarrow Pass(S, t)$$

for suitable Test, Valid, Pass.

Codensity Bisimulations for Coalgebras

•
$$F : \mathbb{B} \to \mathbb{B}, \quad p : \mathbb{E} \to \mathbb{B}$$
: **CLat** _{\wedge} -fibration

• $\Omega \in \mathbb{C}, \quad \tau : F\Omega \to \Omega, \quad \dot{\Omega} \in \mathbb{E}_{\Omega}$: a lifting parameter

Codensity Bisimulation

An $(\Omega, \tau, \dot{\Omega})$ -codensity bisimulation on $\delta : Q \to FQ$ is $S \in \mathbb{E}_Q$ s.t.

 $S \leq \delta^*([F]^{\Omega, \tau, \dot{\Omega}}S)$

Theorem

S is an $(\Omega, \tau, \dot{\Omega})$ -codensity bisimulation on $\delta : Q \to FQ$ if and only if

 $\forall t \in \mathbb{B}(Q, \Omega) . t \in \mathbb{E}(S, \dot{\Omega}) \Longrightarrow (Q \xrightarrow{\delta} FQ \xrightarrow{Ft} F\Omega \xrightarrow{\tau} \Omega) \in \mathbb{E}(S, \dot{\Omega})$

Codensity Games

F : B → B, *p* : E → B: CLat_∧-fibration
 Ω ∈ B, τ : *F*Ω → Ω, Ω ∈ E_Ω: a lifting parameter

Codensity Game for $\delta : \mathbf{Q} \to \mathbf{FQ}$ with Parameter $(\Omega, \tau, \dot{\Omega})$

where

 $\begin{aligned} & \textit{Test}(Q) = \mathbb{B}(Q, \Omega) \\ & \textit{Valid}(S, t) \iff t \in \mathbb{E}(S, \dot{\Omega}), \\ & \textit{Pass}(S, t) \iff \tau \circ \textit{Ft} \circ \delta \in \mathbb{E}(S, \dot{\Omega}) \end{aligned}$

Codensity Games

- $F : \mathbb{B} \to \mathbb{B}, \quad p : \mathbb{E} \to \mathbb{B}$: **CLat** \land -fibration
- $\Omega \in \mathbb{B}, \quad \tau : F\Omega \to \Omega, \quad \dot{\Omega} \in \mathbb{E}_{\Omega}$: a lifting parameter

Theorem

The following are equivalent:

- $W \subseteq \mathbb{E}_Q$ is a set of Duplicator-winning positions.
- **2** \bigvee W is a $(\Omega, \tau, \dot{\Omega})$ -codensity bisimulation.

Corollary (Characterization of the Bisimilarity Relation)

 $R \in \mathbb{E}_Q$ is D-winning $\iff R$ is below the $(\Omega, \tau, \dot{\Omega})$ -codensity bisimilarity.

Part III

Distributive Laws for Codensity-Lifted Functors

Joint work with Mayuko Kori, Kazuki Watanabe, Jurriaan Rot

Outline of this Work

The product of deterministic automata $(Q_i, \delta_{a,i}, F_i)$:

 $(Q_1 \times Q_2, \delta_{a,1} \times \delta_{a,2}, F_1 \cap F_2)$

Product of Bisimulations

Given bisimulation relations S_i for each automaton, can we construct a bisimulation relation on the product automaton?

Coalgebraic Reformulation

How can we extend a construction (e.g. the product) on *F*-coalgebras to \dot{F} -bisimulations?

A structure behind the product construction is a distributive law

 $\lambda: \mathbf{T} \circ \mathbf{F}^2 \to \mathbf{F} \circ \mathbf{T},$

yielding a functor T_{λ} : **Coalg**(F)² \rightarrow **Coalg**(F).

Lifting Distributive Laws

Contributions

- To lift $T : \mathbb{B}^N \to \mathbb{B}$, we generalize the codensity lifting using Beohar et al.'s decomposition of codensity liftings [Beohar+ '24].
- We give sufficient conditions for lifting distributive laws to codensity liftings.
- We give a composition of winning positions of codensity games using sufficient conditions (omitted)

Beohar et al.' Decomposition, Fibrationally

Given a **CLat**_{\wedge}-fibration $p : \mathbb{E} \to \mathbb{B}$ and $\Omega \in \mathbb{B}$ and $\dot{\Omega} \in \mathbb{E}_{\Omega}$, we have

We name the mediating functor arising from the change-of-base $L^{p,\Omega}$:

Remark: $L^{p,\dot{\Omega}}$ is fibred $\iff \dot{\Omega}$ is c-injective in the sense of Komorida

Beohar et al.' Decomposition, Fibrationally

Theorem (Beohar+ '24)

L^{p,Ω}: E → Sp(B,Ω) has a right adjoint R^{p,Ω}: Sp(B,Ω) → E.
 F: B → B and τ : FΩ → Ω induces a fibred lifting of F:

$$Sp(F, \tau) : Sp(\mathbb{B}, \Omega) \to Sp(\mathbb{B}, \Omega).$$

The codensity lifting decomposes as

$$[F]^{\Omega,\tau,\dot{\Omega}} \triangleq R^{p,\dot{\Omega}} \circ Sp(F,\tau) \circ L^{p,\dot{\Omega}} \quad \left(= \bigwedge_{k \in \mathbb{E}(-,\Omega)} (\tau \circ F(pk))^* \dot{\Omega} \right)$$

The Pullback Category $Sp(\mathbb{B}, \Omega)$

An object is a pair (*I* ∈ B, *P* ⊆ B(*I*, Ω)), similar to topological space
A morphism from (*I*, *P*) to (*J*, *Q*) is *f* ∈ B(*I*, *J*) such that ∀*k* ∈ *Q* . *k* ∘ *f* ∈ *P*, similar to continuity

The assignment $(\mathbb{B}, \Omega) \mapsto Sp(\mathbb{B}, \Omega)$ extends to a 2-functor $Sp : 1//CAT \to Fib$; here 1//CAT is the lax coslice 2-category.

Sp transfers 2-categorical structures in 1//CAT to those in Fib

Heterogeneous Codensity Lifting

Based on the decomposition, we define the heterogeneous codensity lifting of $F : \mathbb{B} \to \mathbb{C}$ with $\tau : F\Omega \to \Pi$ by:

When $\mathbb{B} = \mathbb{C} =$ **Set** and $\mathbb{E} = \mathbb{F} = \mathbb{V}$ **Cat**, this is the same as topological lifting with $\Lambda = 1$ [Goncharov+ '23].

Instance: *N*-Codensity Lifting (below N = 2)

For $T : \mathbb{B}^2 \to \mathbb{B}$ and $p : \mathbb{E} \to \mathbb{B}$ and $\Omega \in \mathbb{B}$ and $\dot{\Omega} \in \mathbb{E}_{\Omega}$,

$$[T,\sigma](P_1,P_2) = \bigwedge_{k_1 \in \mathbb{E}(P_1,\dot{\Omega}), k_2 \in \mathbb{E}(P_2,\dot{\Omega})} (\sigma \circ T(pk_1,pk_2))^* \dot{\Omega}$$

Distributive Laws between Codensity Liftings

How do we obtain
$$\alpha : [T, \sigma] \circ [F, \tau]^N \rightarrow [F, \tau] \circ [T, \sigma]$$
?

$$\begin{split} [T,\sigma] \circ [F,\tau]^{N} &= R \circ Sp(T,\sigma) \circ L \circ R \circ Sp(F^{N},\tau^{N}) \circ L \\ &\leq R \circ Sp(T,\sigma) \circ Sp(F^{N},\tau^{N}) \circ L \\ &\to R \circ Sp(F,\tau) \circ Sp(T,\sigma) \circ L \\ &\leq R \circ Sp(F,\tau) \circ L \circ R \circ Sp(T,\sigma) \circ L = [F,\tau] \circ [T,\sigma] \end{split}$$

Theorem

The following are sufficient to lift a distributive law α : $T \circ F^N \rightarrow F \circ T$. **a** is a distributive law in 1//**CAT**:

$$\alpha: (T,\sigma) \circ (F^N,\tau^N) \to (F,\tau) \circ (T,\sigma)$$

The last inequality holds (equivalently, Sp(T, σ) • LX is approximating to [F, τ] for all X in the sense of [Komorida+ '21])

$$[F]^{\Omega,\tau,\dot{\Omega}}X \longrightarrow \operatorname{Ran}_{\dot{\Omega}}\dot{\Omega}(X)$$
$$F \circ p(X) \longrightarrow \operatorname{Ran}_{\dot{\Omega}}\Omega(X)$$

E

Related Work

- Preorders on monads [K.&Sato'13]
- Relating Computational Effects by ⊤⊤-Lifting [K.'13]
- Graded lifting of monads [K.'14]
- Expressivity of quantitative modal logics [Komorida+'21]

Bonchi et al. introduced Wasserstein lifting [Bonchi+ '18; see also Sprunger+ '21].

Duality in Lifting Form

When do Wasserstein lifting and codensity lifting coincide?

Appendix: Lifting along Topological Functors

Lifting $G : \mathbb{A} \to \mathbb{B}$ along a **CLat**_{\wedge}-fibration $p : \mathbb{E} \to \mathbb{B}$:

Parameter

... of this lifting is a family of objects $\Omega_{\lambda} \in \mathbb{B}, \dot{\Omega}_{\lambda} \in \mathbb{E}_{\Omega_{\lambda}}$ and

The lifting is the composite

$$\mathbb{A} \xrightarrow{P} Sp(\mathbb{B}, \Omega) \xrightarrow{R^{p, \dot{\Omega}}} \mathbb{E} .$$