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Encode system specifications 
into modal formulas

4

We want to show, for example, 
• We can always reach ~Error  

(“Liveness property”) 
• We never reach a critical 

state ~Close&Heat  
(“Safety property”)

A Kripke frame for a microwave oven [Clarke+’18]

in Math/Logic
(Non-det.) systems Kripke frames 

Specifications modal formulas
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Specification Language CTL 
(Computation Tree Logic) 

[Emerson&Clarke’82]

5

Computation paths of a state  
= “possible futures of ” 

x
x

CTL is a logic which talks about computation 
paths of a system.

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ
∣ 𝖤𝖥θ ∣ 𝖠𝖥θ
∣ 𝖤𝖦θ ∣ 𝖠𝖦θ
∣ 𝖤(θ1𝖴θ2) ∣ 𝖠(θ1𝖴θ2)
∣ 𝖤(θ1𝖶θ2) ∣ 𝖠(θ1𝖶θ2)

Syntax
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CTL has 3 kinds of formulas 

6

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ
∣ 𝖤𝖥θ ∣ 𝖠𝖥θ
∣ 𝖤𝖦θ ∣ 𝖠𝖦θ
∣ 𝖤(θ1𝖴θ2) ∣ 𝖠(θ1𝖴θ2)
∣ 𝖤(θ1𝖶θ2) ∣ 𝖠(θ1𝖶θ2)

1.Booleans
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CTL has 3 kinds of formulas

7

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ
∣ 𝖤𝖥θ ∣ 𝖠𝖥θ
∣ 𝖤𝖦θ ∣ 𝖠𝖦θ
∣ 𝖤(θ1𝖴θ2) ∣ 𝖠(θ1𝖴θ2)
∣ 𝖤(θ1𝖶θ2) ∣ 𝖠(θ1𝖶θ2)

2.Existetial/Universal
“neXt-time” operators
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CTL has 3 kinds of formulas
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θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ
∣ 𝖤𝖥θ ∣ 𝖠𝖥θ
∣ 𝖤𝖦θ ∣ 𝖠𝖦θ
∣ 𝖤(θ1𝖴θ2) ∣ 𝖠(θ1𝖴θ2)
∣ 𝖤(θ1𝖶θ2) ∣ 𝖠(θ1𝖶θ2)

3.Temporal operators: 
capturing eventual/

permanent behaviors 
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CTL is a logic which talks about computation 
paths of a system.

For example…

• “We can always reach ~Error”  
• “We never reach a critical state 

~Close&Heat”

  (~Error)  𝖤𝖥

(~Close&Heat)𝖠𝖦
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CTL has “path-based” semantics

10

CTL formulas contain path-specifing formulas, like . 
So its (default) semantics is exploits computation paths

𝖤𝖥θ

To check , we 
check along each 
path whether there 
is a witness of .

𝖤𝖥θ

θ

Concretely
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CTL is an optimal choice!

11

CTL CTL*
[Emerson&Halpern’85]

(Alternation-free)
Mu-calculus

[Kozen’83]

Expressive power
High 

(path-based)
High 

(path-based)
Low 

(Step-wise)

Complexity of 
Model-check

Polynomial/Linear Exponential Polynomial

Among major specification languages…

we saw
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CTL is an optimal choice!
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Why so efficient?

CTL CTL*
[Emerson&Halpern’85]

(Alternation-free)
Mu-calculus

[Kozen’83]

Expressive power
High 

(path-based)
High 

(path-based)
Low 

(Step-wise)

Complexity of 
Model-check

Polynomial/Linear Exponential Polynomial

Among major specification languages…
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CTL is an optimal choice!
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Why so efficient?

CTL CTL*
[Emerson&Halpern’85]

(Alternation-free)
Mu-calculus

[Kozen’83]

Expressive power
High 

(path-based)
High 

(path-based)
Low 

(Step-wise)

Complexity of 
Model-check

Polynomial/Linear Exponential Polynomial

Among major specification languages…

Because CTL has an 
encoding into Mu-calculus!
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CTL is Efficient since  
CTL has a fixpoint encoding

14

Mu-calculus [Kozen’83]

𝖤𝖥θ ⟶ μu . θ ∨ 𝖤𝖷u

θ ::= u ∣ ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ ∣ μu . θ ∣ νu . θ

For example,…



Kojima (RIMS, JP)

A fixpoint formula can be 
calculated in a step-wise manner

15

0
1
2
…

θ ∨ 𝖤𝖷∅ = θ
⊥ = ∅

θ ∨ 𝖤𝖷θ = {x ∈ X ∣ ∃x′ . x → x and x′ ⊧ θ}

To calculate ,  
we search a witness of   

step-by-step,  
taking succceors each step.

μu . θ ∨ 𝖤𝖷u
θ
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Step-wise semantics of CTL 
is given by fixpoint encoding

16

𝖤𝖥θ ⟶ μu . θ ∨ 𝖤𝖷u ⟶

An intermediate fixpoint formula
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Step-wise semantics of CTL 
is given by fixpoint encoding

17

𝖤𝖥θ ⟶ μu . θ ∨ 𝖤𝖷u ⟶

Those formulas which emerge in this 
encoding are all alternation-free, 
so their model-checking takes only 

poly-time!
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CTL is Expressive 

18

Path-based semantics
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CTL is Efficient 

19

Step-wise semantics
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CTL is Optimal since… 
 path-based and step-wise semantics 

coincide!

20

=

“The fixpoint encoding preserves semantics” 
= Fixpoint Characterization [Emerson&Halpern’85]
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Probabilistic CTL (PCTL) 
[Hansson&Jonsson’94]

22

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖯≥r𝖷θ ∣ 𝖯>r𝖷θ
∣ 𝖯≥r𝖥θ ∣ 𝖯>r𝖥θ
∣ 𝖯≥r𝖦θ ∣ 𝖯>r𝖦θ
∣ 𝖯≥r(θ1𝖴θ2) ∣ 𝖯>r(θ1𝖴θ2)
∣ 𝖯≥r(θ1𝖶θ2) ∣ 𝖯>r(θ1𝖶θ2)

PCTL has the 
“threshold” quantifiers 

 
instead of , 

𝖯≥r, 𝖯>r
𝖤 𝖠
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Fixpoint characterization fails in PCTL…

23

CTL PCTL

Systems Kripke frames Markov chains

Path-based sem.

Step-wise sem.

Fix-Pt. Char.

fixpoint MC algo. Polynomial (Linear)
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CTL PCTL

Systems Kripke frames Markov chains

Path-based sem.

Step-wise sem.

Fix-Pt. Char.

fixpoint MC algo. Polynomial (Linear)

• Not clear what logic deserves the name “CTL” 
• No generic notion of “efficient” path-based logic

Discontent…

Fixpoint characterization fails in PCTL…
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Our Contributions

25

CTL PCTL CCTL

Systems Kripke frames Markov chains -coalgebra

Path-based sem.

Step-wise sem.

Fix-Pt. Char. Thm. 4.6  
& Assum 4.7

fixpoint MC algo. Polynomial (Linear) Polynomial (Algo.1)

TF

1. Introduced Coalgebraic CTL (CCTL) (Def 3.7) 
2. Formulated Coalgebraic Fix. Ch. (Thm 4.6)
3. Identified sufficient condition for it (Assum 4.7) 
4. Introduced a poly-time MC algo. for CCTL (Algo.1)

Ours!
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Our semantic domain has 7 genericities

27

Types A category  
Branching type A monad
Transition type An endofunctor 
A system A coalgebra
Values of predicates An object

Path-quantifiers A set of predicate liftings of  

Next-time operators A set of predicate liftings of  

C
T : C → C

F : C → C
c : X → TFX

Σ = {σ : Ω( ) → ΩT( )}σ∈Σ

T

F

A BT-situation  is…𝒮 = (C, T, F, c, Ω, Σ, Λ)

Λ = {λ : Ω( ) → ΩF( )}λ∈Λ

Ω ∈ C
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Our semantic domain has 7 genericities

28

Types A category  
Branching type A monad
Transition type An endofunctor 
A system A coalgebra
Values of predicates An object

Path-quantifiers A set of predicate liftings of  

Next-time operators A set of predicate liftings of  

C
T : C → C

F : C → C
c : X → TFX

Σ = {σ : Ω( ) → ΩT( )}σ∈Σ

T

F

A BT-situation  is…𝒮 = (C, T, F, c, Ω, Σ, Λ)

Λ = {λ : Ω( ) → ΩF( )}λ∈Λ

Ω ∈ C

The powerset monad in CTL, 
The Giry monad in PCTL

in CTL, 
in PCTL

{◊, □ }
{ ≥r , >r }r∈[0,1]
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How to generalize CTL?

29

There are 2 main ideas:

 is pred. liftings of σ T

First, we generalize modalities in CTL to 
predicate liftings:

path quantifiers: 𝖤, 𝖠 ⟶ ♠σ (σ ∈ Σ)
Next-time operators: 𝖷 ⟶ (λ ∈ Λ)

 is a pred. lifting of λ F
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How to generalize CTL?

30

There are 2 main ideas:
Second, we use the following identification:

 
 

…

𝖥θ ≡ μu . θ ∨ 𝖷u
𝖦θ ≡ νu . θ ∧ 𝖷u

Here,  is interpreted as an operator on path-formulas, an 
extended class of formulas from CTL.

𝖷

Namely,  in CTL are writen as LFP/GFP of !𝖥, 𝖦, 𝖴, 𝖶 𝖷
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How to generalize CTL?

31

There are 2 main ideas:
Second, we use the following identification:

 
 

…

𝖥θ ≡ μu . θ ∨ 𝖷u
𝖦θ ≡ νu . θ ∧ 𝖷u

Namely,  in CTL are writen as LFP/GFP of !𝖥, 𝖦, 𝖴, 𝖶 𝖷
Thus, we can write, for example, in the  case,𝖥

 𝖤𝖥θ ≡ 𝖤(μu . θ ∨ 𝖷u)
𝖠𝖥θ ≡ 𝖠(μu . θ ∨ 𝖷u)
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Coalgebraic CTL (CCTL)

32

Syntax Σ, Λ : set, Γ : ranked set, Γμ, Γν ⊆ Γ

Boolean oper. (made of ) ⊤ , ⊥ , ∧ , ∨

Quantified next-time oper. (like / ) 𝖤𝖷 𝖠𝖷

Temporal operators:
Generalization of  in the LFP ( ) case, and  
generalization of  in the GFP ( ) case

𝖤𝖥, 𝖤𝖴, 𝖠𝖥, 𝖠𝖴, μ
𝖤𝖦, 𝖤𝖶, 𝖠𝖦, 𝖠𝖶, ν
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CCTL’s path-based semantics is 
given by infinite trace [Jacobs’04]

33

Briefly,…

• Notion of computation tree is replaced by infinite trace of 
 and . 

• The trace map is a Kleisli map 
                        
   where  is the final  -coalgebra, called generalized    
stream object.  is a coalgebraic version of path space.

T FX = X × F

𝗍𝗋 : X → TZX
ZX FX

ZX
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Fixpoint Encoding of CCTL

34

Encoding

Transform LFP/GFP of next-time oper. ( ) on paths to 
LFP/GFP of quantified next-time operators (like ).

𝖷
𝖤𝖷, 𝖠𝖷

Idea

Each application of  is distributed inside ♠σ μ, ν
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Coalgebraic Fixpoint 
Characterization

35

Two Semantics

The above triangle commutes.

The image of ϵ

Coalgeraic step-wise semantics 
as in [Venema’06] 

Coalgeraic path-based semantics 
using inf. trace

Thm 4.6



Kojima (RIMS, JP)

Sufficient conditions

36

Assum 4.7
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Sufficient conditions

37

Assum 4.7

(4) classifies CTL  
& PCTL
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Cond. (4) in CTL is easy!

38

Cond. (4) for , for example, is…𝖤𝖥

x ⊧ 𝖤𝖥θ ⟹ x ⊧ μu . θ ∨ 𝖤𝖷u

“There is a path  of , along 
which we reach  in future”

π x
θ

“There is a reachable state 
 from  with ”x′ x x′ ⊧ θ
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Cond. (4) in not valid in PCTL…

39

the  case (we put here ):𝖯≥1𝖥 θ = p

x ⊧ 𝖯≥1𝖥p ⟹ x ⊧ μu . p ∨ 𝖯≥1𝖷u

“Almost surely  in future”p LFP of “  or almost surely  
in next-step”
p u
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Cond. (4) in not valid in PCTL…

40

the  case (we put here ):𝖯≥1𝖥 θ = p

x ⊧ 𝖯≥1𝖥p ⟹ x ⊧ μu . p ∨ 𝖯≥1𝖷u

“Almost surely  in future”p LFP of “  now or almost 
surely  in next-step”

p
u

• LHS =  = RHS! 
• LHS measures “global” behaviour,  
but RHS only cares “local” behavior. 

{x, y} ⊈ {y}
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Results obtained without cond. (4):
• Coalgebraic expansion law

• Partial Fixpoint Characterization
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Results valid without (4):
• Coalgebraic expansion law

• Partial fixpoint characterization

Qualitative variant of PCTL  
satisfies all but(4), 

so it enjoys partial Fix. Ch.
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Poly-time MC for CCTL

43

Idea behind our algo.
1. Encode CCTL into a (coalgebaic) fixpoint logic 
2. Calculate fixpoint formulas, step-wisely

Our model checking 
algorithm 𝖬𝖢𝖢𝖢𝖳𝖫

𝒮

Here suppose finite coalgebra in a 
concrete category
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Poly-time MC for CCTL

44

Correctness (prop. 5.2)
 terminates and returns               for   .𝖬𝖢𝖢𝖢𝖳𝖫

𝒮 ∈ 𝖢𝖢𝖳𝖫

 
•  : the number of subformulas 
•  : the maximal time to execute boolean opr. 
•  : the maximal time to solve  
    for  and  

𝒪( |ψ | ⋅ |X | ⋅ N ⋅ t(σ, λ))
|ψ |
N
t(σ, λ)

x ∈ X U ∈ ΩX

Complexity (prop. 5.4)

A key is semantics-preservation of our encoding!

Our encoding is linear-time, and encoded formula is alternation-free!
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Future Work
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CTL PCTL CCTL

Systems Kripke frames Markov chains -coalgebra

Path-based sm.

Step-wise sm.

Fix-Pt. Ch. Thm. 4.6  
& Assum 4.7

fixpoint MC algo. Polynomial (Linear) Polynomial (Algo.1)

TF
Ours!

• Find a nice probablilistic path-based logic in which 
Fix-Pt. Ch. holds 

• Formalize a path-based version of Parikh’s game 
logic [Parikh’85], analyzing the neighbouhood 
monad 

• Generalize a fixpoint encoding of CTL* [Cirstea’11]
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Future Work
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CTL PCTL CCTL

Systems Kripke frames Markov chains -coalgebra

Path-based sm.

Step-wise sm.

Fix-Pt. Ch. Thm. 4.6  
& Assum 4.7

fixpoint MC algo. Polynomial (Linear) Polynomial (Algo.1)

TF
Ours!

• Find a nice probablilistic path-based logic in which 
Fix-Pt. Ch. holds. 

• Formalize a path-based version of Parikh’s game 
logic [Parikh’85], analyzing the neighbouhood 
monad 

• Generalize a fixpoint encoding of CTL* [Cirstea’11]
Thanks!


