
Kojima (RIMS, JP)

Coalgebraic CTL: Fixpoint
characterization and Poly-

time Model Checking
Ryota Kojima1, Corina Cirstea2, Koko Muroya1 and Ichiro

Hasuo3

RIMS, Kyoto Univ.1, Univ. of Southampton2,
and National Institute of Informatics3

6 Apr. 2024,CMCS 2024

Kojima (RIMS, JP)

Contents

1. CTL is efficient, thanks to fixpoint encoding

2. Why is Probabilistic CTL not as good as CTL?

3. We generalize CTL: Coalgebraic CTL

2

Kojima (RIMS, JP)

Contents

1. CTL is efficient, thanks to fixpoint encoding

2. Why is Probabilistic CTL not as good as CTL?

3. We generalize CTL: Coalgebraic CTL

3

Kojima (RIMS, JP)

Encode system specifications
into modal formulas

4

We want to show, for example,
• We can always reach ~Error

(“Liveness property”)
• We never reach a critical

state ~Close&Heat
(“Safety property”)

A Kripke frame for a microwave oven [Clarke+’18]

in Math/Logic
(Non-det.) systems Kripke frames

Specifications modal formulas

Kojima (RIMS, JP)

Specification Language CTL
(Computation Tree Logic)

[Emerson&Clarke’82]

5

Computation paths of a state
= “possible futures of ”

x
x

CTL is a logic which talks about computation
paths of a system.

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ
∣ 𝖤𝖥θ ∣ 𝖠𝖥θ
∣ 𝖤𝖦θ ∣ 𝖠𝖦θ
∣ 𝖤(θ1𝖴θ2) ∣ 𝖠(θ1𝖴θ2)
∣ 𝖤(θ1𝖶θ2) ∣ 𝖠(θ1𝖶θ2)

Syntax

Kojima (RIMS, JP)

CTL has 3 kinds of formulas

6

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ
∣ 𝖤𝖥θ ∣ 𝖠𝖥θ
∣ 𝖤𝖦θ ∣ 𝖠𝖦θ
∣ 𝖤(θ1𝖴θ2) ∣ 𝖠(θ1𝖴θ2)
∣ 𝖤(θ1𝖶θ2) ∣ 𝖠(θ1𝖶θ2)

1.Booleans

Kojima (RIMS, JP)

CTL has 3 kinds of formulas

7

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ
∣ 𝖤𝖥θ ∣ 𝖠𝖥θ
∣ 𝖤𝖦θ ∣ 𝖠𝖦θ
∣ 𝖤(θ1𝖴θ2) ∣ 𝖠(θ1𝖴θ2)
∣ 𝖤(θ1𝖶θ2) ∣ 𝖠(θ1𝖶θ2)

2.Existetial/Universal
“neXt-time” operators

Kojima (RIMS, JP)

CTL has 3 kinds of formulas

8

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ
∣ 𝖤𝖥θ ∣ 𝖠𝖥θ
∣ 𝖤𝖦θ ∣ 𝖠𝖦θ
∣ 𝖤(θ1𝖴θ2) ∣ 𝖠(θ1𝖴θ2)
∣ 𝖤(θ1𝖶θ2) ∣ 𝖠(θ1𝖶θ2)

3.Temporal operators:
capturing eventual/

permanent behaviors

Kojima (RIMS, JP)9

CTL is a logic which talks about computation
paths of a system.

For example…

• “We can always reach ~Error”
• “We never reach a critical state

~Close&Heat”

 (~Error) 𝖤𝖥

(~Close&Heat)𝖠𝖦

Kojima (RIMS, JP)

CTL has “path-based” semantics

10

CTL formulas contain path-specifing formulas, like .
So its (default) semantics is exploits computation paths

𝖤𝖥θ

To check , we
check along each
path whether there
is a witness of .

𝖤𝖥θ

θ

Concretely

Kojima (RIMS, JP)

CTL is an optimal choice!

11

CTL CTL*
[Emerson&Halpern’85]

(Alternation-free)
Mu-calculus

[Kozen’83]

Expressive power
High

(path-based)
High

(path-based)
Low

(Step-wise)

Complexity of
Model-check

Polynomial/Linear Exponential Polynomial

Among major specification languages…

we saw

Kojima (RIMS, JP)

CTL is an optimal choice!

12

Why so efficient?

CTL CTL*
[Emerson&Halpern’85]

(Alternation-free)
Mu-calculus

[Kozen’83]

Expressive power
High

(path-based)
High

(path-based)
Low

(Step-wise)

Complexity of
Model-check

Polynomial/Linear Exponential Polynomial

Among major specification languages…

Kojima (RIMS, JP)

CTL is an optimal choice!

13

Why so efficient?

CTL CTL*
[Emerson&Halpern’85]

(Alternation-free)
Mu-calculus

[Kozen’83]

Expressive power
High

(path-based)
High

(path-based)
Low

(Step-wise)

Complexity of
Model-check

Polynomial/Linear Exponential Polynomial

Among major specification languages…

Because CTL has an
encoding into Mu-calculus!

Kojima (RIMS, JP)

CTL is Efficient since
CTL has a fixpoint encoding

14

Mu-calculus [Kozen’83]

𝖤𝖥θ ⟶ μu . θ ∨ 𝖤𝖷u

θ ::= u ∣ ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖤𝖷θ ∣ 𝖠𝖷θ ∣ μu . θ ∣ νu . θ

For example,…

Kojima (RIMS, JP)

A fixpoint formula can be
calculated in a step-wise manner

15

0
1
2
…

θ ∨ 𝖤𝖷∅ = θ
⊥ = ∅

θ ∨ 𝖤𝖷θ = {x ∈ X ∣ ∃x′ . x → x and x′ ⊧ θ}

To calculate ,
we search a witness of

step-by-step,
taking succceors each step.

μu . θ ∨ 𝖤𝖷u
θ

Kojima (RIMS, JP)

Step-wise semantics of CTL
is given by fixpoint encoding

16

𝖤𝖥θ ⟶ μu . θ ∨ 𝖤𝖷u ⟶

An intermediate fixpoint formula

Kojima (RIMS, JP)

Step-wise semantics of CTL
is given by fixpoint encoding

17

𝖤𝖥θ ⟶ μu . θ ∨ 𝖤𝖷u ⟶

Those formulas which emerge in this
encoding are all alternation-free,
so their model-checking takes only

poly-time!

Kojima (RIMS, JP)

CTL is Expressive

18

Path-based semantics

Kojima (RIMS, JP)

CTL is Efficient

19

Step-wise semantics

Kojima (RIMS, JP)

CTL is Optimal since…
 path-based and step-wise semantics

coincide!

20

=

“The fixpoint encoding preserves semantics”
= Fixpoint Characterization [Emerson&Halpern’85]

Kojima (RIMS, JP)

Contents

1. CTL is efficient, thanks to fixpoint encoding

2. Why is Probabilistic CTL not as good as CTL?

3. We generalize CTL: Coalgebraic CTL

21

Kojima (RIMS, JP)

Probabilistic CTL (PCTL)
[Hansson&Jonsson’94]

22

θ ::= ⊤ ∣ ⊥ ∣ θ1 ∧ θ2 ∣ θ1 ∨ θ2

∣ 𝖯≥r𝖷θ ∣ 𝖯>r𝖷θ
∣ 𝖯≥r𝖥θ ∣ 𝖯>r𝖥θ
∣ 𝖯≥r𝖦θ ∣ 𝖯>r𝖦θ
∣ 𝖯≥r(θ1𝖴θ2) ∣ 𝖯>r(θ1𝖴θ2)
∣ 𝖯≥r(θ1𝖶θ2) ∣ 𝖯>r(θ1𝖶θ2)

PCTL has the
“threshold” quantifiers

instead of ,

𝖯≥r, 𝖯>r
𝖤 𝖠

Kojima (RIMS, JP)

Fixpoint characterization fails in PCTL…

23

CTL PCTL

Systems Kripke frames Markov chains

Path-based sem.

Step-wise sem.

Fix-Pt. Char.

fixpoint MC algo. Polynomial (Linear)

Kojima (RIMS, JP)24

CTL PCTL

Systems Kripke frames Markov chains

Path-based sem.

Step-wise sem.

Fix-Pt. Char.

fixpoint MC algo. Polynomial (Linear)

• Not clear what logic deserves the name “CTL”
• No generic notion of “efficient” path-based logic

Discontent…

Fixpoint characterization fails in PCTL…

Kojima (RIMS, JP)

Our Contributions

25

CTL PCTL CCTL

Systems Kripke frames Markov chains -coalgebra

Path-based sem.

Step-wise sem.

Fix-Pt. Char. Thm. 4.6
& Assum 4.7

fixpoint MC algo. Polynomial (Linear) Polynomial (Algo.1)

TF

1. Introduced Coalgebraic CTL (CCTL) (Def 3.7)
2. Formulated Coalgebraic Fix. Ch. (Thm 4.6)
3. Identified sufficient condition for it (Assum 4.7)
4. Introduced a poly-time MC algo. for CCTL (Algo.1)

Ours!

Kojima (RIMS, JP)

Contents

1. CTL is efficient, thanks to fixpoint encoding

2. Why is Probabilistic CTL not as good as CTL?

3. We generalize CTL: Coalgebraic CTL

26

Kojima (RIMS, JP)

Our semantic domain has 7 genericities

27

Types A category
Branching type A monad
Transition type An endofunctor
A system A coalgebra
Values of predicates An object

Path-quantifiers A set of predicate liftings of

Next-time operators A set of predicate liftings of

C
T : C → C

F : C → C
c : X → TFX

Σ = {σ : Ω() → ΩT()}σ∈Σ

T

F

A BT-situation is…𝒮 = (C, T, F, c, Ω, Σ, Λ)

Λ = {λ : Ω() → ΩF()}λ∈Λ

Ω ∈ C

Kojima (RIMS, JP)

Our semantic domain has 7 genericities

28

Types A category
Branching type A monad
Transition type An endofunctor
A system A coalgebra
Values of predicates An object

Path-quantifiers A set of predicate liftings of

Next-time operators A set of predicate liftings of

C
T : C → C

F : C → C
c : X → TFX

Σ = {σ : Ω() → ΩT()}σ∈Σ

T

F

A BT-situation is…𝒮 = (C, T, F, c, Ω, Σ, Λ)

Λ = {λ : Ω() → ΩF()}λ∈Λ

Ω ∈ C

The powerset monad in CTL,
The Giry monad in PCTL

in CTL,
in PCTL

{◊, □ }
{ ≥r , >r }r∈[0,1]

Kojima (RIMS, JP)

How to generalize CTL?

29

There are 2 main ideas:

 is pred. liftings of σ T

First, we generalize modalities in CTL to
predicate liftings:

path quantifiers: 𝖤, 𝖠 ⟶ ♠σ (σ ∈ Σ)
Next-time operators: 𝖷 ⟶ (λ ∈ Λ)

 is a pred. lifting of λ F

Kojima (RIMS, JP)

How to generalize CTL?

30

There are 2 main ideas:
Second, we use the following identification:

…

𝖥θ ≡ μu . θ ∨ 𝖷u
𝖦θ ≡ νu . θ ∧ 𝖷u

Here, is interpreted as an operator on path-formulas, an
extended class of formulas from CTL.

𝖷

Namely, in CTL are writen as LFP/GFP of !𝖥, 𝖦, 𝖴, 𝖶 𝖷

Kojima (RIMS, JP)

How to generalize CTL?

31

There are 2 main ideas:
Second, we use the following identification:

…

𝖥θ ≡ μu . θ ∨ 𝖷u
𝖦θ ≡ νu . θ ∧ 𝖷u

Namely, in CTL are writen as LFP/GFP of !𝖥, 𝖦, 𝖴, 𝖶 𝖷
Thus, we can write, for example, in the case,𝖥

 𝖤𝖥θ ≡ 𝖤(μu . θ ∨ 𝖷u)
𝖠𝖥θ ≡ 𝖠(μu . θ ∨ 𝖷u)

Kojima (RIMS, JP)

Coalgebraic CTL (CCTL)

32

Syntax Σ, Λ : set, Γ : ranked set, Γμ, Γν ⊆ Γ

Boolean oper. (made of) ⊤ , ⊥ , ∧ , ∨

Quantified next-time oper. (like /) 𝖤𝖷 𝖠𝖷

Temporal operators:
Generalization of in the LFP () case, and
generalization of in the GFP () case

𝖤𝖥, 𝖤𝖴, 𝖠𝖥, 𝖠𝖴, μ
𝖤𝖦, 𝖤𝖶, 𝖠𝖦, 𝖠𝖶, ν

Kojima (RIMS, JP)

CCTL’s path-based semantics is
given by infinite trace [Jacobs’04]

33

Briefly,…

• Notion of computation tree is replaced by infinite trace of
 and .

• The trace map is a Kleisli map

 where is the final -coalgebra, called generalized
stream object. is a coalgebraic version of path space.

T FX = X × F

𝗍𝗋 : X → TZX
ZX FX

ZX

Kojima (RIMS, JP)

Fixpoint Encoding of CCTL

34

Encoding

Transform LFP/GFP of next-time oper. () on paths to
LFP/GFP of quantified next-time operators (like).

𝖷
𝖤𝖷, 𝖠𝖷

Idea

Each application of is distributed inside ♠σ μ, ν

Kojima (RIMS, JP)

Coalgebraic Fixpoint
Characterization

35

Two Semantics

The above triangle commutes.

The image of ϵ

Coalgeraic step-wise semantics
as in [Venema’06]

Coalgeraic path-based semantics
using inf. trace

Thm 4.6

Kojima (RIMS, JP)

Sufficient conditions

36

Assum 4.7

Kojima (RIMS, JP)

Sufficient conditions

37

Assum 4.7

(4) classifies CTL
& PCTL

Kojima (RIMS, JP)

Cond. (4) in CTL is easy!

38

Cond. (4) for , for example, is…𝖤𝖥

x ⊧ 𝖤𝖥θ ⟹ x ⊧ μu . θ ∨ 𝖤𝖷u

“There is a path of , along
which we reach in future”

π x
θ

“There is a reachable state
 from with ”x′ x x′ ⊧ θ

Kojima (RIMS, JP)

Cond. (4) in not valid in PCTL…

39

the case (we put here):𝖯≥1𝖥 θ = p

x ⊧ 𝖯≥1𝖥p ⟹ x ⊧ μu . p ∨ 𝖯≥1𝖷u

“Almost surely in future”p LFP of “ or almost surely
in next-step”
p u

Kojima (RIMS, JP)

Cond. (4) in not valid in PCTL…

40

the case (we put here):𝖯≥1𝖥 θ = p

x ⊧ 𝖯≥1𝖥p ⟹ x ⊧ μu . p ∨ 𝖯≥1𝖷u

“Almost surely in future”p LFP of “ now or almost
surely in next-step”

p
u

• LHS = = RHS!
• LHS measures “global” behaviour,
but RHS only cares “local” behavior.

{x, y} ⊈ {y}

Kojima (RIMS, JP)41

Results obtained without cond. (4):
• Coalgebraic expansion law

• Partial Fixpoint Characterization

Kojima (RIMS, JP)42

Results valid without (4):
• Coalgebraic expansion law

• Partial fixpoint characterization

Qualitative variant of PCTL
satisfies all but(4),

so it enjoys partial Fix. Ch.

Kojima (RIMS, JP)

Poly-time MC for CCTL

43

Idea behind our algo.
1. Encode CCTL into a (coalgebaic) fixpoint logic
2. Calculate fixpoint formulas, step-wisely

Our model checking
algorithm 𝖬𝖢𝖢𝖢𝖳𝖫

𝒮

Here suppose finite coalgebra in a
concrete category

Kojima (RIMS, JP)

Poly-time MC for CCTL

44

Correctness (prop. 5.2)
 terminates and returns for .𝖬𝖢𝖢𝖢𝖳𝖫

𝒮 ∈ 𝖢𝖢𝖳𝖫

• : the number of subformulas
• : the maximal time to execute boolean opr.
• : the maximal time to solve
 for and

𝒪(|ψ | ⋅ |X | ⋅ N ⋅ t(σ, λ))
|ψ |
N
t(σ, λ)

x ∈ X U ∈ ΩX

Complexity (prop. 5.4)

A key is semantics-preservation of our encoding!

Our encoding is linear-time, and encoded formula is alternation-free!

Kojima (RIMS, JP)

Future Work

45

CTL PCTL CCTL

Systems Kripke frames Markov chains -coalgebra

Path-based sm.

Step-wise sm.

Fix-Pt. Ch. Thm. 4.6
& Assum 4.7

fixpoint MC algo. Polynomial (Linear) Polynomial (Algo.1)

TF
Ours!

• Find a nice probablilistic path-based logic in which
Fix-Pt. Ch. holds

• Formalize a path-based version of Parikh’s game
logic [Parikh’85], analyzing the neighbouhood
monad

• Generalize a fixpoint encoding of CTL* [Cirstea’11]

Kojima (RIMS, JP)

Future Work

46

CTL PCTL CCTL

Systems Kripke frames Markov chains -coalgebra

Path-based sm.

Step-wise sm.

Fix-Pt. Ch. Thm. 4.6
& Assum 4.7

fixpoint MC algo. Polynomial (Linear) Polynomial (Algo.1)

TF
Ours!

• Find a nice probablilistic path-based logic in which
Fix-Pt. Ch. holds.

• Formalize a path-based version of Parikh’s game
logic [Parikh’85], analyzing the neighbouhood
monad

• Generalize a fixpoint encoding of CTL* [Cirstea’11]
Thanks!

