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Encode system specifications
iNnto modal formulas

(Non-det.) systems

in Math/Logic
Kripke frames

Specifications

Start
~Close

~Heat
Error

Start
Close

~Start
Close
Heat

~Error

“start cooking”

~Heat ~Heat
Error ~Error

Start

Close

Heat
~Error

A Kripke frame for a microwave oven [Clarke+’118]

modal formulas

We want to show, for example,
* We can always reach ~Error
(“Liveness property”)

* We never reach a critical
state ~Close&Heat
(“Safety property”)

Kojima (RIMS, JP)



Specification Language CTL
(Computation Tree Logic)

[Emerson&Clarke’82]

CTL is a logic which talks about computation
paths of a system.

D Syntax
(z'1) @ 0 :..= | L]0, ANO, |6,V O,
- EXO | AXH
@) EFO | AF6
D EGO | AGO
. E(0,U6,) | A(6,U0,)
Computation paths of a state x E(O,W0,) | A(,W0,)

= “possible futures of x”

2 TROTMATRIMIS, JP)



CTL has 3 kinds of formulas

0:=T|L|6,A0,]|6,V80, 1-Booleans
| EXO | AXO
| EFO | AFO
| EGO | AGO
E(6,U8) | A9,U6,)
E(6,W6,) | A(G,W6)

- Kojima (RIMS, JP)



CTL has 3 kinds of formulas

0= T ‘ = ‘ Hl A 6’2 ‘ 91 v 6’2 2.Existetial/Universal
| EXO | AX6O “neXt-time” operators
| EFO | AF6
| EGO | AGO
| E(6,U6,) | A6,U6,)
| E(6,W6,) | A(B;W6,)

, Kojima (RIMS, JP)



CTL has 3 kinds of formulas

9::: T‘J_‘Hl/\é’z‘é’l\/@z
| EXO | AXE

| EF6 | AF0
3. T | )
| EGO | AGO 7 Capturing oventuall

| E(QIUQZ) ‘ A(Qlugz) permanent behaviors
| E(O,W0,) | A(O\W0,)
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CTL is a logic which talks about computation

paths of a system.
For example...

“We can always reach ~Error”
“We never reach a critical state

~Close&Heat”

Start
~Close
~Heat

Error

EF(~Error)

Start
Close
~Heat

~Start
Close
Heat

~Error

“start cooking”

Error

Start
Close

Heat

~Error

AG(~Close&Heat)

Kojima (RIMS, JP)



CTL has “path-based” semantics

CTL formulas contain path-specifing formulas, like EFO.
SO Its (default) semantics is exploits computation paths

Concretely

To check EF@, we
check along each

path whether there
is a witness of 4.




CTL is an optimal choice!

Among major specification languages...

(Alternation-free)

CTL* " -
[Emerson&Halpern’8s] u-calcuius
[Kozen'83]
we saw ~Expressive power High High Low
/ P P (path-based) (path-based) (Step-wise)
Complexity of S | |
| Pol |
Model-check Polynomial/Linear Exponentia olynomia
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CTL is an optimal choice!

Among major specification languages...

(Alternation-free)

Mu-calculus
[Kozen’83]

CTL*

[Emerson&Halpern’85s]

Expressive power High High Low
p P (path-based) (path-based) (Step-wise)
Complexity of o | |
Model-check Polynomial/Linear Exponential Polynomial

Why so efficient?
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CTL is an optimal choice!

Among major specification languages...

(Alternation-free)

CTL* M
[Emerson&Halpern’85s] u&gfelgg;us
; High Because CTL has an
Expressive power (path-bas: _ _
P encoding into Mu-calculus!
Complexity of | I/L'/ - .- el .
Model-check olynomial/Linear Xponentia olynomia

Why so efficient?
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CTL is Efficient since
CTL has a fixpoint encoding

For example, ...

EFO — uu .0 v EXu

Mu-calculus [Kozen'83]

| EXO | AXO | uu .0 | vu.6

y Kojima (RIMS, JP)



A fixpoint formula can be
calculated In a step-wise manner

To calculate uu . 8 v EXu,
we search a witness of &
step-by-step,
taking succceors each step.

0 1l=g
1 OV EXD =20
2 OVEXO={xeX|3Ix.x > xand x' kE 0}

- JP)



Step-wise semantics of CTL
'S given by fixpoint encoding

An intermediate fixpoint formula

EFO0 — uu.0v EXu —

o Kojima (RIMS, JP)



Step-wise semantics of CTL
'S given by fixpoint encoding

EFO0 — uu.0v EXu —

Those formulas which emerge in this
encoding are all alternation-free,
so their model-checking takes only

poly-time!

. Kojima (RIMS, JP)



CTL is Expressive

/ Path-based semantics

07

07

07
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CTL is Efficient

Step-wise semantics \

" Kojima (RIMS, JP)



CTL is Optimal since...
path-based and step-wise semantics
coincide!

07

07

“The fixpoint encoding preserves semantics”
— FiXpOint CharaCterization [Emerson&Halpern’8s]

0 nojiTa (hnvio, JP)
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Probabilistic CTL (PCTL)

[Hansson&Jonsson’94]

9::: T‘J_‘Hl/\ez‘elvez

| P, X0 | P, X6O PCTL has the

N “threshold” quantifiers
‘ PZI’FH ‘ P>rF9 PZ,,, P>r
| PerH | P>,,Gé’ instead of E, A

| P, (6,U6,) | P, (0,U0,)
| P (O,W6,) | P, (0,W0,)

2 Kojima (RIMS, JP)



Fixpoint characterization fails in PCTL...

Systems Kripke frames Markov chains

v v/

Step-wise sem. V V
Fix-Pt. Char. \/ x

fixpoint MC algo. B u eI EE) x

Path-based sem.

23
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Fixpoint characterization fails in PCTL...

Systems Kripke frames Markov chains

v v/

Step-wise sem. V V
Fix-Pt. Char. \/ x

fixpoint MC algo. B A U Rzl x

Path-based sem.

Discontent...

* Not clear what logic deserves the name “CTL" 6
 No generic notion of “efficient” path-based logic Q

O

24
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Our Contributions

Systems Kripke frames Markov chains T'F -coalgebra
Path-based sem. V V J

Step-wise sem. V V
Fix-Pt. Char. V X V T

b delellgi i) (031 [s[e}8 Polynomial (Linear) x Polynomial (Algo.1)

ntroduced Coalgebraic CTL (CCTL) (Def3.7)
—~ormulated Coalgebraic Fix. Ch. (thm 4.6)
dentified sufficient condition for it (Assum 4.7)

ntroduced a poly-time MC algo. for CCTL (aigo.1)
o Kojima (RIMS, JP)
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Our semantic domain has 7 genericities
A BT-situation 8 = (C, T, F,c,€,2, \)is...

Types A category

Branchingtype =~ Amonad7:C—C
Transiiontype ~ Anendofunctor F: C - C
Asystem Acoalgebra c: X - TFX
Values of predicates ~ Anobject Qe C

...........................................................................................................................................................................................................................................................

Next-time operators A Set of predlcate I|ft|ngs of F

A={1: QL) - QFLY, |

. Kojima (RIMS, JP)



Our semantic domain has 7 genericities
A BT-situation 8 = (C, T, F,c,€,2, \)is...

Next-time operators

{O, }in CTL,
{ Zr > 2y }re[O,l]in PCTL

A category C

The powerset monad in CTL,
The Giry monad in PCTL

............................................................................................................................................................
............................................................................................................................................................

............................................................................................................................................................

A set of predicate liftings of F

A={1: QL) - QFLY, |

e Kojima (RIMS, JP)



How to generalize CTL?

There are 2 main 1deas:

First, we generalize modalities in CTL to
predicate liftings:

o is pred. liftings of T

path quantifiers: E,A — &, (0 € 2)
Next-time operators: X — Oy (4 € A)

A is a pred. lifting of F

. Kojima (RIMS, JP)



How to generalize CTL?

There are 2 main 1deas:

Second, we use the following identification:

FO = uu.0 v Xu
GO=vu.90 N Xu

Namely, F, G, U, W in CTL are writen as LFP/GFP of X!

Here, X is interpreted as an operator on path-formulas, an
extended class of formulas from CTL.

. Kojima (RIMS, JP)



How to generalize CTL?

There are 2 main 1deas:

Second, we use the following identification:

FO = uu.0 v Xu
GO=vu.90 N Xu

Namely, F, G, U, W in CTL are writen as LFP/GFP of X!

Thus, we can write, for example, in the F case,

EFO = E(uu .0 Vv Xu)
AFO = A(uu .0 v Xu)

N Kojima (RIMS, JP)



Coalgebraic CTL (CCTL)

Syntax X,A:set, I':rankedset, I',,I,CT
Y €CCTLp, r, =

Jy (Y15, Yy))

" YAVIRY) Quantified next-time oper. (like EX/AX)

‘a(,uu- v, (1/}17"°7¢|’yu|—17@)\u))
‘U(V/U“ v, (191,- .o 7w|’y,,|—17®)\u))

Boolean oper. (madeof T , L, A, V)

Temporal operators:
Generalization of EF, EU, AF, AU, in the LFP (1) case, and
generalization of EG, EW, AG, AW, in the GFP (v) case

" Kojima (RIMS, JP)



CCTL's path-based semantics is
given by infinite trace [Jacobs'04]

Briefly, ...

* Notion of computation tree is replaced by infinite trace of
l'and Fy = X X F.

* [he trace map is a Kleisli map
tr: X — 17,
where Zy is the final Fy -coalgebra, called generalized
stream object. Zy is a coalgebraic version of path space.

” Kojima (RIMS, JP)



Fixpoint Encoding of CCTL
Encoding

|dea

Transform LFP/GFP of next-time oper. (X) on paths to
| FP/GFP of quantified next-time operators (like EX, AX).

Each application of @ is distributed inside p, v s )



Coalgebraic Fixpoint

Characterization
TWO SemaﬂtICS The image of €

CCTL CCTL

[ ﬂ% / CCTL

Coalgeraic path-based semantics
using inf. trace Coalgeraic step-wise semantics

as in [Venema’'06]

Thm 4.6

The above triangle commutes.
- Kojima (RIMS, JP)




Sufficient conditions

Assum 4.7

1.
2.

= Qo

T is an affine monad,
the maximal trace tr(c’) satisfies

X x TZx 22X P(X x Zx)
(idx,tr(c))T (ot T (C1,idz ) (5)
X — ") Sz

. for every o € X, ev, = 0(idg): T2 — 2 is an Eilenberg-Moore T-algebra,
. for every 0 € X, A € A, and for every pu-scheme <, € I}, and v-scheme

v, € I, we have

[[‘o]] ('u’é)\,*y“,bé]w”) L 'Lllgp("’)‘)ﬂmé’lvul ) (6)
[[‘G]](VQPA'YV’LE”I’VVI) = VW(G’)‘)"YV’E"IWI’ (7)
for every tuple of u%STL formulas O_M = (01,...,04)),

. for every vy € I, UI), and 0 € X, 7: Rl — (2 is bilinear |10, Section 1]

with respect to the T-algebra ev,: T'{2 — {2,

. for every o € X and A € A, the map ev) oinj,: 2/%l — 2 is bilinear w.r.t.

ev,, where inj_ : 2ol — Hoca 1212l is the injection of the index .

v



Sufficient conditions

Assum 4.7

1. T is an affine monad,
2. the maximal trace tr(c’) satisfies

X x TZx 22X P(X x Zx)
(idx,tr(c))T (ot T (C1,idz ) (5)
X — ") Sz

3. for every o € X, ev, = 0(idgp): T2 — 2 is an Eilenberg-Moore T-algebra,
4. for every 0 € X, A € A, and for every p-scheme <, € I}, and v-scheme
v, € I, we have

(4) classifies CTL ~ [#elw®s, 5., ) & Mo nd, (6)
& PCTL [[‘0]](”@,\%,@%& - VW(G,,\),%,QWV (7)
for every tuple of u%STL formulas O_M = (01,...,04)),

5. for every v € I},UI), and 0 € X, 7: Rl — (2 is bilinear |10, Section 1]
with respect to the T-algebra ev,: T'{2 — (2,

6. for every o € X and )\ € A, the map ev) oinj,: 2% — (2 is bilinear w.r.t.
ev,, where inj_ : 2ol — Hoca 1212l is the injection of the index .

T



Cond. (4) iIn CTL is easy!

Cond. (4) for EF, for example, is...

XFEFO = xF uu.0v EXu

“There i1s a path & of x, along  “There is a reachable state
which we reach @ in future” x’ from x with x" F @

” Kojima (RIMS, JP)



Cond. (4) in not valid in PCTL...

the leF case (we put here 8 = p):

XEP Fp= xFuu.pVv P, Xu

“‘Almost surely p in future” ~ LFP of "p or almost surely u
N next-step”

i Kojima (RIMS, JP)



Cond. (4) in not valid in PCTL...

the leF case (we put here 8 = p):

XEP Fp = xFuu.pVv P, Xu

“‘Almost surely p in future’ LFP of "p now or almost
surely u in next-step”

1/2 1

+ LHS = {x,y} € {y} = RHS!
* L HS measures “global” behaviour, 1/2

but RHS only cares “local” behavior.

P p

40 KOJIma (Rl1ivlS, Jr)



Results obtained without cond. (4):
- Coalgebraic expansion law

Proposition 4.9 (coalgebraic expansion law). Let o € X, A € A, and
pu-schemes vy, € I, and v-schemes v, € I,,. We have

o] (1 45)\,7“,,,9*'7“'_1) ] L-D(G,A),yu,g_"W'_l (II‘U]](/‘ dBAﬁmbé’IM'_l)) (7)
for 01,...,0,, -1 with [10;]spm 3 [0;] yccre fori=1,...,|v.| =1, and
[[‘UII(V ¢A’7V’L§|7ul—1) = Sp(o’)‘)"yv’gl’vu|—1 ([[‘0]](1/ @A”YV’LO_"'YV|_1)) (8)

for 01,...,0,, -1 with [10;]sFm C [60:] yccre fori=1,...,|y,| — 1. Furthermore,
if [¢0;]sFmi = [0:] yccre for every subformula 0;, the inequalz’tz’es@ and@ are both
equalities.

Partial Fixpoint Characterization

Proposition 4.10 (partial fixpoint characterization). Under the same as-
sumption of Thm.[{.6 (Assum.[4.7) but without condition |4}, we have

1. [0] yccre = [¢0]sFmi for a formula 6 without any p or v,
2. [0] ccre E [tO]sFmi for a formula 6 with only us, and
3. [0] sccre 3 [0]sEmi for a formula 6 with only vs.

4|




Results valid without (4):
e Coalgebraic expansion law

Proposition 4.9 (coalgebraic expansion law). Let o € X, A € A, and
pu-schemes vy, € I, and v-schemes v, € I,,. We have

[[‘0]]('“45%7“7&&]7“—1) ;L'D(a,,' (TA T/.. & V) [\
for 6,0, 1, with [16,]sem 2 [0 QuUaAlItative variant of PCTL
®]vB, - T satisfies all but(4),
Yo stV |y, | =17 — g,

for 01,...,0.y, -1 with [10;]sFm E [0: SO It ENJOys partlal Fix. Ch.

if [L0;]sFmi = [0:] yccre for every subfi
equalities.

» Partial fixpoint characterization

Proposition 4.10 (partial fixpoint characterization). Under the same as-
sumption of Thm.[{.6 (Assum.[4.7) but without condition |4}, we have

1. [0] yccre = [¢0]sFmi for a formula 6 without any p or v,
2. [0] ccre E [tO]sFmi for a formula 6 with only us, and
3. [0] sccre 3 [0]sEmi for a formula 6 with only vs.

47




Poly-time MC for CCTL

|[dea behind our algo.

1. Encode CCTL into a (coalgebaic) fixpoint logic
2. Calculate fixpoint formulas, step-wisely

R——

Algorithm 1 A CCTL model-checking algorithm MCgCTL.

Input: A CCTL formula 1.
Output: An 2-predicate U € 2%. > where S = (C, T, F,c, 2,3, A).
1: procedure CHECK(6)

Our model checking

3
4: return y(CHECK(0,), ..., CHECK(0|,)))
5: end case = TL
algorithm MC&®

g: return [#,Q,\]J(CHECK(6)) é)

end case

9: case pu. [, (01,...,6MH|_1,QU®>\u)

10: U:=1;V:i=79, (CHECK(Ol) ..... CHECK(GMM_l), [[Q,,OA]](L))

11: while U # V do

12: U:=V m—

13: V :=v,(CHECK(61), ..., CHECK(0),,|-1), [#- V2] (V))

14: end while

15: return U

16: end case

%g caseUl-/z'TE-v{/(-o—l,'.(bol‘fﬁ‘(;}l{,(:a)%u)CHECK(e ), [M-0A1(T)) . .

Tt wie 27 oo e o) 89 Here suppose finite coalgebra in a
: U=V

21: V :=~v,(CHECK(6,),..., CHECK(0|4,|-1), [#:Ox](U

2 end oty ) (1), 4 9L0) concrete category
: return U

24: end case

25: end procedure

45 Kojima (RIMS, JP)




Poly-time MC for CCTL

Correctness (prop. 5.2)
MC%CTL terminates and returns ||| sFmi for » € CCTL.

A key Is semantics-preservation of our encoding!

Comp\exity (prop. 5.4)
O(ly| - 1X|-N-1o,4))
« || : the number of subformulas
« N : the maximal time to execute boolean opr.
e (0, A) : the maximal time to solve = € [#,V\](U)

forx € Xand U € Q%

Our encoding is linear-time, and encoded formula is alternation-free!

pawah S R R R T




Systems Kripke frames Markov chains I'F-coalgebra

Path-based sm. V V «
Step-wise sm. V V V

Fix-Pt. Ch. v 4 X A
b delellgi i) (031[s[e}8 Polynomial (Linear) x Polynomial (Algo.1)
Future Work
-ind a nice probablilistic path-based logic in which
-ix-Pt. Ch. holds
* Formalize a path-based version of Parikh’s game

logic [Parikh’85], analyzing the neighbouhood
monad
* Generalize a fixpoint encoding of CTL* [Cirstea’'11]
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Systems Kripke frames Markov chains I'F-coalgebra

Path-based sm. V V V
Step-wise sm. V V V

Fix-Pt. Ch. v 4 X A
b delellgi i) (031[s[e}8 Polynomial (Linear) x Polynomial (Algo.1)
Future Work
* Find a nice probablilistic path-based logic in which
-ix-Pt. Ch. holds.
* Formalize a path-based version of Parikh’s game

logic [Parikh’85], analyzing the neighbouhood Thanks!
monad

* (Generalize a fixpoint encoding of CTL* [Cirsteaﬂ 1]
4 Kojima (RIMS, JP)




