Coalgebraic CTL: Fixpoint characterization and Polytime Model Checking

<u>Ryota Kojima</u>¹, Corina Cirstea², Koko Muroya¹ and Ichiro Hasuo³

> RIMS, Kyoto Univ.¹, Univ. of Southampton², and National Institute of Informatics³ 6 Apr. 2024,CMCS 2024

Contents

- 1. CTL is efficient, thanks to fixpoint encoding
- 2. Why is Probabilistic CTL not as good as CTL?
- 3. We generalize *CTL: Coalgebraic CTL*

Contents

- 1. CTL is efficient, thanks to fixpoint encoding
- 2. Why is Probabilistic CTL not as good as CTL?
- 3. We generalize CTL: Coalgebraic CTL

Encode system specifications into modal formulas

A Kripke frame for a microwave oven [Clarke+'18]

Specification Language CTL (Computation Tree Logic)

[Emerson&Clarke'82]

CTL is a logic which talks about computation paths of a system.

<u>Syntax</u> $\theta ::= \mathsf{T} \mid \bot \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2$ $| EX\theta | AX\theta$ $| EF\theta | AF\theta$ $| EG\theta | AG\theta$ $| E(\theta_1 U \theta_2) | A(\theta_1 U \theta_2)$ $| E(\theta_1 W \theta_2) | A(\theta_1 W \theta_2)$

CTL has 3 kinds of formulas

CTL has <u>3 kinds</u> of formulas

CTL has <u>3 kinds</u> of formulas

$\theta ::= \top \mid \perp \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2$ $| EX\theta | AX\theta$ $| EF\theta | AF\theta$ $| EG\theta | AG\theta$ $| E(\theta_1 U \theta_2) | A(\theta_1 U \theta_2)$ $| E(\theta_1 W \theta_2) | A(\theta_1 W \theta_2)$

3. Temporal operators:

capturing eventual/ permanent behaviors

CTL is a logic which talks about computation paths of a system.

For example...

"We can always reach ~Error"
 "We never reach a critical state
 ~Close&Heat"
 AG(~Close&Heat)

CTL has "path-based" semantics

CTL formulas contain path-specifing formulas, like $EF\theta$. So its (default) semantics is exploits computation paths

CTL is an optimal choice!

Among major specification languages...

		CTL	CTL* [Emerson&Halpern'85]	(Alternation-free) Mu-calculus [Kozen'83]
we saw	Expressive power	High (path-based)	High (path-based)	Low (Step-wise)
	Complexity of Model-check	Polynomial/Linear	Exponential	Polynomial

CTL is an optimal choice!

Among major specification languages...

	CTL	CTL* [Emerson&Halpern'85]	(Alternation-free) Mu-calculus [Kozen'83]
Expressive power	High (path-based)	High (path-based)	Low (Step-wise)
Complexity of Model-check	Polynomial/Linear	Exponential	Polynomial
Why so	efficient?		

CTL is an optimal choice!

Among major specification languages...

CTL is **Efficient** since CTL has a **fixpoint encoding**

For example,...

$\mathsf{EF}\theta \longrightarrow \mu u \,.\, \theta \lor \mathsf{EX}u$

Mu-calculus [Kozen'83]

$$\begin{split} \theta &::= u \mid \top \mid \perp \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2 \\ &\mid \mathsf{EX}\theta \mid \mathsf{AX}\theta \mid \mu u \,.\, \theta \mid \nu u \,.\, \theta \end{split}$$

A fixpoint formula can be calculated in a **step-wise** manner

To calculate $\mu u \cdot \theta \vee EXu$, we search a witness of θ step-by-step, taking succeers each step.

$$1 \quad \theta \lor \mathsf{EX} \emptyset = \theta$$

$$2 \quad \theta \lor \mathsf{EX} \theta = \{x \in X \mid \exists x' . x \to x \text{ and } x' \models \theta\}$$

Step-wise semantics of CTL is given by fixpoint encoding

An intermediate fixpoint formula

 $\rightarrow \mu u \cdot \theta \vee \mathsf{EX} u$ $\mathsf{EF}\theta$

Step-wise semantics of CTL is given by fixpoint encoding

$$\mathsf{EF}\theta \longrightarrow \mu u \,.\, \theta \lor \mathsf{EX}u \longrightarrow$$

Those formulas which emerge in this encoding are all **alternation-free**, so <u>their model-checking takes only</u> <u>poly-time</u>!

CTL is **Optimal** since... path-based and step-wise semantics coincide! x'' $\theta?$ x'_1 x'_1 x''_2 x''_2 θ ? [x] $\theta?$ x'''_{1} θ ? x'_2 x'_{2} θ x'''_{2} x'''_{2} $\theta?$

"The fixpoint encoding preserves semantics" = Fixpoint Characterization [Emerson&Halpern'85] 20

Contents

- 1. CTL is efficient, thanks to fixpoint encoding
- 2. Why is Probabilistic CTL not as good as CTL?
- 3. We generalize *CTL: Coalgebraic CTL*

Probabilistic CTL (PCTL)

[Hansson&Jonsson'94]

 $\theta ::= \top \mid \perp \mid \theta_1 \land \theta_2 \mid \theta_1 \lor \theta_2$ $| \mathsf{P}_{>r} \mathsf{X} \theta | \mathsf{P}_{>r} \mathsf{X} \theta$ PCTL has the "threshold" quantifiers $| \mathsf{P}_{>r}\mathsf{F}\theta | \mathsf{P}_{>r}\mathsf{F}\theta$ $P_{>r}, P_{>r}$ instead of E, A $| P_{>r}G\theta | P_{>r}G\theta$ $| \mathsf{P}_{>r}(\theta_1 \mathsf{U} \theta_2) | \mathsf{P}_{>r}(\theta_1 \mathsf{U} \theta_2)$ $|\mathsf{P}_{>r}(\theta_1 \mathsf{W} \theta_2)| \mathsf{P}_{>r}(\theta_1 \mathsf{W} \theta_2)$

Fixpoint characterization **fails** in PCTL...

	CTL	PCTL
Systems	Kripke frames	Markov chains
Path-based sem.		
Step-wise sem.		
Fix-Pt. Char.		×
fixpoint MC algo.	Polynomial (Linear)	X

Fixpoint characterization fails in PCTL...

	CTL	PCTL
Systems	Kripke frames	Markov chains
Path-based sem.		
Step-wise sem.		
Fix-Pt. Char.		×
fixpoint MC algo.	Polynomial (Linear)	X

Discontent...

- Not clear what logic deserves the name "CTL"
- No generic notion of "efficient" path-based logic

Our Contributions [Ours!

	CTL	PCTL	CCTL
Systems	Kripke frames	Markov chains	TF -coalgebra
Path-based sem.			
Step-wise sem.			
Fix-Pt. Char.		X	Thm. 4.6 & Assum 4.7
fixpoint MC algo.	Polynomial (Linear)	×	Polynomial (Algo.1)

- 1. Introduced Coalgebraic CTL (CCTL) (Def 3.7)
- 2. Formulated Coalgebraic Fix. Ch. (Thm 4.6)
- 3. Identified sufficient condition for it (Assum 4.7)
- 4. Introduced a **poly-time MC algo**. for CCTL (Algo.1)

Contents

- 1. CTL is efficient, thanks to fixpoint encoding
- 2. Why is Probabilistic CTL not as good as CTL?
- 3. We generalize CTL: Coalgebraic CTL

Our semantic domain has 7 genericities

A BT-situation $\mathcal{S} = (\mathbf{C}, T, F, c, \Omega, \Sigma, \Lambda)$ is...

Types	A category C
Branching type	A monad $T: \mathbf{C} \to \mathbf{C}$
Transition type	An endofunctor $F: \mathbf{C} \to \mathbf{C}$
A system	A coalgebra $c: X \rightarrow TFX$
Values of predicates	An object $\Omega \in \mathbf{C}$
Path-quantifiers	A set of predicate liftings of T $\Sigma = \{\sigma \colon \Omega^{(-)} \to \Omega^{T(-)}\}_{\sigma \in \Sigma}$
Next-time operators	A set of predicate liftings of F $\Lambda = \{\lambda \colon \Omega^{(-)} \to \Omega^{F(-)}\}_{\lambda \in \Lambda}$

Our semantic do	main has	7 genericities			
A BT-situation $\mathcal{S} = ($	A BT-situation $\mathcal{S} = (\mathbf{C}, T, F, c, \Omega, \Sigma, \Lambda)$ is				
Types	A category C	The powerset monad in CTL The Giry monad in PCTL			
Branching type	A monad $T: \mathbf{C} \to \mathbf{C}$				
Transition type	An endofunctor $F \colon \mathbf{C} \to \mathbf{C}$				
A system	A coalgebra $c: X \rightarrow TFX$				
Values of predicates	An object $\Omega \in \mathbb{C}$				
Path-quantifiers	A set of predicate liftings of T $\Sigma = \{\sigma \colon \Omega^{(-)} \to \Omega^{T(-)}\}_{\sigma \in \Sigma}$				
Next-time operators $\{\Diamond, \Box\}$ in CTL,	A set of predic $\Lambda = \{\lambda : \Omega^{(-)}$	ate liftings of $F \rightarrow \Omega^{F(-)} \}_{\lambda \in \Lambda}$			
$\{ \geq_r, >_r \}_{r \in [0,1]}$ in PCTL	28	Kojima (RIMS, JP)			

How to generalize CTL?

There are 2 main ideas: First, we generalize modalities in CTL to predicate liftings:

 σ is pred. liftings of T

path quantifiers:
$$E, A \longrightarrow \phi_{\sigma}$$
 ($\sigma \in \Sigma$)
Next-time operators: $X \longrightarrow \heartsuit_{\lambda}$ ($\lambda \in \Lambda$)

 λ is a pred. lifting of F

How to generalize CTL?

There are 2 main ideas:

. . .

Second, we use the following identification: $F\theta \equiv \mu u \cdot \theta \lor Xu$ $G\theta \equiv \nu u \cdot \theta \land Xu$

Namely, F, G, U, W in CTL are writen as LFP/GFP of X!

Here, X is interpreted as an operator on **path-**formulas, an extended class of formulas from CTL.

How to generalize CTL?

There are 2 main ideas:

. . .

Second, we use the following identification: $F\theta \equiv \mu u \cdot \theta \lor Xu$ $G\theta \equiv \nu u \cdot \theta \land Xu$

Namely, F, G, U, W in CTL are writen as LFP/GFP of X!

Thus, we can write, for example, in the F case, $EF\theta \equiv E(\mu u \cdot \theta \lor Xu)$ $AF\theta \equiv A(\mu u \cdot \theta \lor Xu)$

Coalgebraic CTL (CCTL)

<u>Syntax</u> $\Sigma, \Lambda : \text{set}, \Gamma : \text{ranked set}, \Gamma_{\mu}, \Gamma_{\nu} \subseteq \Gamma$

 $\psi \in \mathsf{CCTL}_{\Gamma_{\mu},\Gamma_{\nu}} ::= \\ \Box_{\gamma} (\psi_{1}, \dots, \psi_{|\gamma|}) \\ | \blacklozenge_{\sigma} \heartsuit_{\lambda} \psi \\ | \diamondsuit_{\sigma} (\mu u. \Box_{\gamma_{\mu}} (\psi_{1}, \dots, \psi_{|\gamma_{\mu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \diamondsuit_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \bigtriangledown_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \bigtriangledown_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \bigtriangledown_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \bigtriangledown_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \bigtriangledown_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \bigtriangledown_{\lambda} u)) \\ | \longleftrightarrow_{\sigma} (\nu u. \Box_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \bigtriangledown_{\lambda} u) \\ | \longleftrightarrow_{\sigma} (\psi_{1}, \dots,$

Temporal operators: Generalization of EF, EU, AF, AU, in the LFP (μ) case, and generalization of EG, EW, AG, AW, in the GFP (ν) case

CCTL's path-based semantics is given by **infinite trace** [Jacobs'04]

Briefly,...

- Notion of computation tree is replaced by infinite trace of T and $F_X = X \times F$.
- The trace map is a Kleisli map

tr: $X \rightarrow TZ_X$ where Z_X is the final F_X -coalgebra, called **generalized** stream object. Z_X is a coalgebraic version of path space.

Fixpoint Encoding of CCTL

Encoding

$$\begin{aligned} \epsilon \Big(\boxdot_{\gamma}(\psi_{1}, \dots, \psi_{|\gamma|}) \Big) &:= \boxdot_{\gamma}(\epsilon \psi_{1}, \dots, \epsilon \psi_{|\gamma|}), \\ \epsilon \Big(\blacklozenge_{\sigma} \heartsuit_{\lambda} \psi \Big) &:= \blacklozenge_{\sigma} \heartsuit_{\lambda}(\epsilon \psi), \end{aligned}$$
$$\epsilon \Big(\blacklozenge_{\sigma} \Big(\mu u. \boxdot_{\gamma_{\mu}} (\psi_{1}, \dots, \psi_{|\gamma_{\mu}|-1}, \heartsuit_{\lambda} u) \Big) \Big) &:= \mu u. \boxdot_{\gamma_{\mu}} (\epsilon \psi_{1}, \dots, \epsilon \psi_{|\gamma_{\mu}|-1}, \blacklozenge_{\sigma} \heartsuit_{\lambda} u), \\ \epsilon \Big(\blacklozenge_{\sigma} \Big(\nu u. \boxdot_{\gamma_{\nu}} (\psi_{1}, \dots, \psi_{|\gamma_{\nu}|-1}, \heartsuit_{\lambda} u) \Big) \Big) &:= \nu u. \boxdot_{\gamma_{\nu}} (\epsilon \psi_{1}, \dots, \epsilon \psi_{|\gamma_{\nu}|-1}, \blacklozenge_{\sigma} \heartsuit_{\lambda} u). \end{aligned}$$

<u>Idea</u>

Transform LFP/GFP of **next-time** oper. (X) on paths to LFP/GFP of **quantified next-time** operators (like **EX, AX**).

Each application of ϕ_{σ} is distributed inside μ, ν (MS, JP)

Coalgebraic Fixpoint Characterization

The above triangle commutes.

Sufficient conditions

<u>Assum 4.7</u>

- 1. T is an affine monad,
- 2. the maximal trace tr(c') satisfies

$$\begin{array}{ccc} X \times TZ_X \xrightarrow{\operatorname{st}_{X,Z_X}} T(X \times Z_X) \\ & & & \uparrow^T\langle\zeta_1, \operatorname{id}_{Z_X}\rangle \\ & & X \xrightarrow{\operatorname{tr}(c')} TZ_X, \end{array} \tag{5}$$

- 3. for every $\sigma \in \Sigma$, $\operatorname{ev}_{\sigma} = \sigma_{\Omega}(\operatorname{id}_{\Omega}) \colon T\Omega \to \Omega$ is an Eilenberg-Moore *T*-algebra,
- 4. for every $\sigma \in \Sigma$, $\lambda \in \Lambda$, and for every μ -scheme $\gamma_{\mu} \in \Gamma_{\mu}$ and ν -scheme $\gamma_{\nu} \in \Gamma_{\nu}$, we have

$$\llbracket \blacklozenge_{\sigma} \rrbracket (\mu \Phi_{\lambda, \gamma_{\mu}, \iota \vec{\theta}_{|\gamma_{\mu}|}}) \sqsubseteq \mu \Psi_{(\sigma, \lambda), \gamma_{\mu}, \vec{\theta}_{|\gamma_{\mu}|}}, \tag{6}$$

$$\llbracket \blacklozenge_{\sigma} \rrbracket (\nu \Phi_{\lambda \gamma_{\nu}, \iota \vec{\theta}_{|\gamma_{\nu}|}}) \sqsupseteq \nu \Psi_{(\sigma, \lambda), \gamma_{\nu}, \vec{\theta}_{|\gamma_{\nu}|}}, \tag{7}$$

for every tuple of $\mu_{\Gamma_{\mu},\Gamma_{\nu}}^{\mathsf{CCTL}}$ formulas $\vec{\theta}_{|\gamma|} = (\theta_1, \ldots, \theta_{|\gamma|}),$

- 5. for every $\gamma \in \Gamma_{\mu} \cup \Gamma_{\nu}$ and $\sigma \in \Sigma, \gamma \colon \Omega^{|\gamma|} \to \Omega$ is bilinear [10, Section 1] with respect to the *T*-algebra $\operatorname{ev}_{\sigma} \colon T\Omega \to \Omega$,
- 6. for every $\sigma \in \Sigma$ and $\lambda \in \Lambda$, the map $\operatorname{ev}_{\lambda} \circ \operatorname{inj}_{\alpha} \colon \Omega^{|\alpha|} \to \Omega$ is bilinear w.r.t. $\operatorname{ev}_{\sigma}$, where $\operatorname{inj}_{\alpha} \colon \Omega^{|\alpha|} \to \coprod_{\alpha \in \Lambda} \Omega^{|\alpha|}$ is the injection of the index α .

Sufficient conditions Assum 4.7

1. T is an affine monad,

2. the maximal trace tr(c') satisfies

$$\begin{array}{ccc} X \times TZ_X \xrightarrow{\operatorname{st}_{X,Z_X}} T(X \times Z_X) \\ & & & \uparrow^T\langle\zeta_1, \operatorname{id}_{Z_X}\rangle \\ & & X \xrightarrow{\operatorname{tr}(c')} & TZ_X, \end{array} \tag{5}$$

3. for every $\sigma \in \Sigma$, $\operatorname{ev}_{\sigma} = \sigma_{\Omega}(\operatorname{id}_{\Omega}) \colon T\Omega \to \Omega$ is an Eilenberg-Moore *T*-algebra, 4. for every $\sigma \in \Sigma$, $\lambda \in \Lambda$, and for every μ -scheme $\gamma_{\mu} \in \Gamma_{\mu}$ and ν -scheme $\gamma_{\nu} \in \Gamma_{\nu}$, we have

(4) classifies CTL & PCTL

$$\llbracket \blacklozenge_{\sigma} \rrbracket (\mu \Phi_{\lambda, \gamma_{\mu}, \iota \vec{\theta}_{|\gamma_{\mu}|}}) \sqsubseteq \mu \Psi_{(\sigma, \lambda), \gamma_{\mu}, \vec{\theta}_{|\gamma_{\mu}|}}, \tag{6}$$

$$\llbracket \blacklozenge_{\sigma} \rrbracket (\nu \Phi_{\lambda \gamma_{\nu}, \iota \vec{\theta}_{|\gamma_{\nu}|}}) \sqsupseteq \nu \Psi_{(\sigma, \lambda), \gamma_{\nu}, \vec{\theta}_{|\gamma_{\nu}|}}, \tag{7}$$

for every tuple of $\mu_{\Gamma_{\mu},\Gamma_{\nu}}^{\mathsf{CCTL}}$ formulas $\vec{\theta}_{|\gamma|} = (\theta_1, \dots, \theta_{|\gamma|}),$

- 5. for every $\gamma \in \Gamma_{\mu} \cup \Gamma_{\nu}$ and $\sigma \in \Sigma, \gamma \colon \Omega^{|\gamma|} \to \Omega$ is bilinear [10, Section 1] with respect to the *T*-algebra $\operatorname{ev}_{\sigma} \colon T\Omega \to \Omega$,
- 6. for every $\sigma \in \Sigma$ and $\lambda \in \Lambda$, the map $ev_{\lambda} \circ inj_{\alpha} \colon \Omega^{|\alpha|} \to \Omega$ is bilinear w.r.t. ev_{σ} , where $inj_{\alpha} \colon \Omega^{|\alpha|} \to \coprod_{\alpha \in \Lambda} \Omega^{|\alpha|}$ is the injection of the index α .

Cond. (4) in **not** valid in PCTL... the $P_{>1}F$ case (we put here $\theta = p$): $x \models \mathsf{P}_{>1}\mathsf{F}p \Longrightarrow x \models \mu u \cdot p \lor \mathsf{P}_{>1}\mathsf{X}u$ LFP of "*p* or almost surely *u* "Almost surely *p* in future" in next-step"

Cond. (4) in **not** valid in PCTL... the $P_{>1}F$ case (we put here $\theta = p$): $x \models \mathsf{P}_{>1}\mathsf{F}p \Longrightarrow x \models \mu u \, . \, p \lor \mathsf{P}_{>1}\mathsf{X}u$ LFP of "*p* now or almost "Almost surely p in future" surely *u* in next-step" • LHS = $\{x, y\} \not\subseteq \{y\}$ = RHS! LHS measures "global" behaviour, but RHS only cares "local" behavior.

Results obtained without cond. (4):

<u>Coalgebraic expansion law</u>

Proposition 4.9 (coalgebraic expansion law). Let $\sigma \in \Sigma$, $\lambda \in \Lambda$, and μ -schemes $\gamma_{\mu} \in \Gamma_{\mu}$ and ν -schemes $\gamma_{\nu} \in \Gamma_{\nu}$. We have

$$\llbracket \blacklozenge_{\sigma} \rrbracket (\mu \varPhi_{\lambda, \gamma_{\mu}, \iota \vec{\theta}_{|\gamma_{\mu}|-1}}) \sqsupseteq \Psi_{(\sigma, \lambda), \gamma_{\mu}, \vec{\theta}_{|\gamma_{\mu}|-1}} (\llbracket \blacklozenge_{\sigma} \rrbracket (\mu \varPhi_{\lambda, \gamma_{\mu}, \iota \vec{\theta}_{|\gamma_{\mu}|-1}}))$$
(7)

for $\theta_1, \ldots, \theta_{|\gamma_{\mu}|-1}$ with $\llbracket \iota \theta_i \rrbracket_{\mathsf{SFml}} \sqsupseteq \llbracket \theta_i \rrbracket_{\mu} \operatorname{cctl}$ for $i = 1, \ldots, |\gamma_{\mu}| - 1$, and

$$\llbracket \blacklozenge_{\sigma} \rrbracket (\nu \Phi_{\lambda, \gamma_{\nu}, \iota \vec{\theta}_{|\gamma_{\nu}|-1}}) \sqsubseteq \Psi_{(\sigma, \lambda), \gamma_{\nu}, \vec{\theta}_{|\gamma_{\nu}|-1}} (\llbracket \blacklozenge_{\sigma} \rrbracket (\nu \Phi_{\lambda, \gamma_{\nu}, \iota \vec{\theta}_{|\gamma_{\nu}|-1}}))$$
(8)

for $\theta_1, \ldots, \theta_{|\gamma_{\nu}|-1}$ with $\llbracket \iota \theta_i \rrbracket_{\mathsf{SFml}} \sqsubseteq \llbracket \theta_i \rrbracket_{\mu^{\mathsf{CCTL}}}$ for $i = 1, \ldots, |\gamma_{\nu}| - 1$. Furthermore, if $\llbracket \iota \theta_i \rrbracket_{\mathsf{SFml}} = \llbracket \theta_i \rrbracket_{\mu^{\mathsf{CCTL}}}$ for every subformula θ_i , the inequalities 7 and 8 are both equalities.

Partial Fixpoint Characterization

Proposition 4.10 (partial fixpoint characterization). Under the same assumption of Thm. 4.6 (Assum. 4.7) but without condition 4, we have

- 1. $\llbracket \theta \rrbracket_{\mu} CCTL = \llbracket \iota \theta \rrbracket_{SFml}$ for a formula θ without any μ or ν ,
- 2. $\llbracket \theta \rrbracket_{\mu} \operatorname{cctl} \sqsubseteq \llbracket \iota \theta \rrbracket_{\mathsf{SFml}}$ for a formula θ with only μs , and
- 3. $\llbracket \theta \rrbracket_{\mu}^{\mathsf{CCTL}} \supseteq \llbracket \iota \theta \rrbracket_{\mathsf{SFml}}$ for a formula θ with only νs .

Results valid without (4):

<u>Coalgebraic expansion law</u>

Proposition 4.9 (coalgebraic expansion law). Let $\sigma \in \Sigma$, $\lambda \in \Lambda$, and μ -schemes $\gamma_{\mu} \in \Gamma_{\mu}$ and ν -schemes $\gamma_{\nu} \in \Gamma_{\nu}$. We have

• Partial fixpoint characterization

Proposition 4.10 (partial fixpoint characterization). Under the same assumption of Thm. 4.6 (Assum. 4.7) but without condition 4, we have

- 1. $\llbracket \theta \rrbracket_{\mu} CCTL = \llbracket \iota \theta \rrbracket_{SFml}$ for a formula θ without any μ or ν ,
- 2. $\llbracket \theta \rrbracket_{\mu} \operatorname{cctl} \sqsubseteq \llbracket \iota \theta \rrbracket_{\mathsf{SFml}}$ for a formula θ with only μs , and
- 3. $\llbracket \theta \rrbracket_{\mu} \operatorname{cctl} \sqsupseteq \llbracket \iota \theta \rrbracket_{\mathsf{SFml}}$ for a formula θ with only νs .

Poly-time MC for CCTL

Idea behind our algo.

Encode CCTL into a (coalgebaic) fixpoint logic
 Calculate fixpoint formulas, step-wisely


```
Input: A CCTL formula \psi.
Output: An \Omega-predicate U \in \Omega^X.
                                                                                                                                   \triangleright where \mathcal{S} = (\mathbb{C}, T, F, c, \Omega, \Sigma, \Lambda).
  1: procedure CHECK(\theta)
  2:
               switch \theta do
  3:
                       case \odot_{\gamma}(\theta_1,\ldots,\theta_{|\gamma|})
  4:
                             return \gamma(CHECK(\theta_1),..., CHECK(\theta_{|\gamma|}))
  5:
                       end case
   6:
                       case \oint_{\sigma} \heartsuit_{\lambda} \theta'
   7:
                             return \llbracket \blacklozenge_{\sigma} \heartsuit_{\lambda} \rrbracket (CHECK(\theta'))
  8:
                       end case
  9:
                       case \mu u. \boxdot_{\gamma} (\theta_1, \ldots, \theta_{|\gamma_{\mu}|-1}, \blacklozenge_{\sigma} \heartsuit_{\lambda} u)
10:
                             U := \bot; V := \gamma_{\mu} \left( \operatorname{CHECK}(\theta_{1}), \dots, \operatorname{CHECK}(\theta_{|\gamma_{\mu}|-1}), \llbracket \blacklozenge_{\sigma} \heartsuit_{\lambda} \rrbracket (\bot) \right)
11:
                              while U \neq V do
12:
                                    U := V
13:
                                     V := \gamma_{\mu} \big( \mathrm{CHECK}(\theta_1), \dots, \mathrm{CHECK}(\theta_{|\gamma_{\mu}|-1}), \llbracket \blacklozenge_{\sigma} \heartsuit_{\lambda} \rrbracket(U) \big)
14:
                             end while
15:
                             return U
16:
                       end case
17:
                       case \nu u. \boxdot_{\gamma_{\nu}} (\theta_1, \ldots, \theta_{|\gamma_{\nu}|-1}, \blacklozenge_{\sigma} \heartsuit_{\lambda} u)
                             U := \top; V := \gamma_{\nu} \left( \text{CHECK}(\theta_1), \dots, \text{CHECK}(\theta_{|\gamma_{\nu}|-1}), \llbracket \blacklozenge_{\sigma} \heartsuit_{\lambda} \rrbracket(\top) \right)
18:
19:
                              while U \neq V do
20: 21:
                                    U := V
                                     V := \gamma_{\nu} \left( \text{CHECK}(\theta_1), \dots, \text{CHECK}(\theta_{|\gamma_{\nu}|-1}), \llbracket \blacklozenge_{\sigma} \heartsuit_{\lambda} \rrbracket(U) \right)
22:
                              end while
23:
                             return U
24:
                       end case
25: end procedure
26: return CHECK(\iota^{-1}\psi)
```

Our model checking algorithm MC_{S}^{CCTL}

Here suppose **finite** coalgebra in a **concrete** category

Poly-time MC for CCTL

 $MC_{\mathcal{S}}^{CCTL}$ terminates and returns $\llbracket \psi \rrbracket$ SFmI for $\psi \in CCTL$.

A key is semantics-preservation of our encoding!

- $\frac{\text{Complexity}}{\mathcal{O}(|\psi| \cdot |X| \cdot N \cdot t(\sigma, \lambda))}$
- $|\psi|$: the number of subformulas
- N : the maximal time to execute boolean opr.
- $t(\sigma, \lambda)$: the maximal time to solve $x \in [\![\blacklozenge_{\sigma} \heartsuit_{\lambda}]\!](U)$ for $x \in X$ and $U \in \Omega^X$

Our encoding is linear-time, and encoded formula is alternation-free!

	CTL	PCTL	CCTL <	Ours!
Systems	Kripke frames	Markov chains	TF-coalgebra	
Path-based sm.				
Step-wise sm.				
Fix-Pt. Ch.		×	Thm. 4.6 & Assum 4.7	
fixpoint MC algo.	Polynomial (Linear)	×	Polynomial (Algo.1)	

Future Work

- Find a nice probablilistic path-based logic in which Fix-Pt. Ch. holds
- Formalize a path-based version of Parikh's game logic [Parikh'85], analyzing the neighbouhood monad
- Generalize a fixpoint encoding of **CTL*** [Cirstea'11]

	CTL	PCTL	CCTL <	Ours!
Systems	Kripke frames	Markov chains	<i>TF</i> -coalgebra	
Path-based sm.				
Step-wise sm.				
Fix-Pt. Ch.		×	Thm. 4.6 & Assum 4.7	
fixpoint MC algo.	Polynomial (Linear)	×	Polynomial (Algo.1)	
<u>Future Work</u>				

- Find a nice probablilistic path-based logic in which Fix-Pt. Ch. holds.
- Formalize a path-based version of Parikh's game logic [Parikh'85], analyzing the neighbouhood monad
- Generalize a fixpoint encoding of CTL* [Cirstea'11]