
CMCS 2024

Nathan E. Liittschwager,

Stelios Tsampas,

Jonathan Castello,

Lindsey Kuper

Coinductive Reasoning
about CRDT Emulation

1

Background: State Machine Replication

Imagine a service offered to a client in the form of a black-box with I/O
behavior and internal state

The client inputs are requests in the form of commands which update

the internal state. 
 
Client observations are accessible by a query method call

Implement the service as a state machine (coalgebra):

a ∈ A

b ∈ B

(u, q) : X → XA × B

2

Background: State Machine Replication

3

To achieve fault tolerance the state machine is

replicated on servers or nodes: with
same initial state  
 
Client input seen as a totally ordered sequence

Each replica must compute the same sequence
, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can

take its role

(u, q) : X → XA × B
n (u1, q1), …, (un, qn) : X → XA × B

x ∈ X

(a1, …, ak) ∈ A*

(x ∈ X, (ui, qi))
(a1, …, ak) ∈ A*

Background: State Machine Replication

4

To achieve fault tolerance the state machine is

replicated on servers or nodes: with
same initial state  
 
Client input seen as a totally ordered sequence

Each replica must compute the same sequence
, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can

take its role

(u, q) : X → XA × B
n (u1, q1), …, (un, qn) : X → XA × B

x ∈ X

(a1, …, ak) ∈ A*

(x ∈ X, (ui, qi))
(a1, …, ak) ∈ A*

Background: State Machine Replication

Non-trivial!

5

To achieve fault tolerance the state machine is

replicated on servers or nodes: with
same initial state  
 
Client input seen as a totally ordered sequence

Each replica must compute the same sequence
, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can

take its role

(u, q) : X → XA × B
n (u1, q1), …, (un, qn) : X → XA × B

x ∈ X

(a1, …, ak) ∈ A*

(x ∈ X, (ui, qi))
(a1, …, ak) ∈ A*

Background: CRDTs

Totally ordering commands non-trivial in asynchronous

distributed systems

Conflict-free Replicated Data Types (CRDTs) solve this problem by

by using data structures which don’t require total order 
 
Two major flavors of CRDT: “State-based” and “Operation-based”

Both achieve strong convergence - if they know about the same

set of messages, they have the same state.

(a1, …, ak) ∈ A*

6

Background: State-Based CRDTs

s1 = 0

s2 = 0

s3 = 0

𝗎𝗉𝖽(s1, ⟨𝚒𝚗𝚌, 𝟻⟩)

𝗎𝗉𝖽(s1, ⟨𝚒𝚗𝚌, 𝟸⟩)

𝗌𝖾𝗇𝖽1→3(s1) 𝗌𝖾𝗇𝖽1→2(s1)

𝚖𝚊𝚡(s2, s1)

𝚖𝚊𝚡(s3, s1)

𝚖𝚊𝚡(s3, s2)

𝗌𝖾𝗇𝖽1→2(s1)

s1 = 5

s2 = 5

s3 = 5

State-based CRDTs use a join-semilattice as the state-space

Updates must be inflationary: for all

(S, ⊔)

s ⊔ 𝗎𝗉𝖽(s, a) = 𝗎𝗉𝖽(s, a) s ∈ S, a ∈ A

7

Background: Operation-based CRDTs

s1 = 0

s2 = 0

s3 = 0

𝗎𝗉𝖽 ⋅ ⟨𝚒𝚗𝚌, 𝟻⟩ ↑ 𝖻𝖼1 ⋅ ⟨𝚒𝚗𝚌, 𝟻⟩

𝗎𝗉𝖽⟨𝚒𝚗𝚌, 𝟸⟩ ↑ 𝖻𝖼2⟨𝚒𝚗𝚌, 𝟸⟩

𝖽𝗅𝗏𝗋1←2(⟨𝚒𝚗𝚌, 𝟸⟩)

s1 = 7

s2 = 7

s3 = 7

𝖽𝗅𝗏𝗋2←1(⟨𝚒𝚗𝚌, 𝟻⟩)

𝖽𝗅𝗏𝗋3←2(⟨𝚒𝚗𝚌, 𝟸⟩)

𝖽𝗅𝗏𝗋3←1⟨𝚒𝚗𝚌, 𝟻⟩

Operation-based CRDTs require messages (operations) be a partial order

Each replica executes the same set of messages in a way consistent with ,

communication is by broadcast

(M, ≺)

≺

8

Definition (Emulation Maps)

Background: CRDT Emulation and Equivalence

9

State-based and op-based CRDTs are often considered to be equivalent.

The reasoning is that they “emulate” each other: there are a pair of maps
 to translate between the two types [Shapiro et al. 2011] 

 
State-based CRDT: Op-based CRDT:

ℱ, 𝒢

((S, ⊔), s0, 𝚞, 𝚚) (S, s0, M, 𝚞, 𝚝, 𝚎, 𝚚)

prepare-msg
effect-msg

((S, ⊔), s0, 𝚞, 𝚚) ℱ↦ (S, s0, S, 𝚞, 𝚞, ⊔ ,𝚚)

(S, s0, M, 𝚞, 𝚝, 𝚎, 𝚚) 𝒢↦ ((𝒫fin(M), ∪), Ø, 𝚞′￼, 𝚚′￼)

where , and

and is appropriate map to translate sets of messages into
state

𝚞′￼(H, a) = H ∪ {𝚝([[H]], a)} 𝚚′￼(H) = 𝚚([[H]])
[[⋅]] : 𝒫fin(M) → S

Background: CRDT Emulation and Equivalence

10

Maps and are intuitively, potentially correct 
 
But, emulation is not rigorously defined: no formal requirements on behavior,

only informal arguments about strong eventual convergence 
 
What if we defined to map each replica to a trivial state machine? 
 

ℱ 𝒢

ℱ

a

s

S = {s}
∀a ∈ A . u(s)(a) = s
q(s) = ⊤ Convergence!

Strong Bisimulation?

11

What if we required the original CRDT and the -emulator

(or -emulator) to exhibit a bisimulation?  

For example, if were a coalgebra homomorphism - Very strong notion of
“equivalence”!

But is there even such a bisimulation?

ℱ
𝒢

𝒢

Strong Bisimulation?

12

What if we required the original CRDT and the -emulator

(or -emulator) to exhibit a bisimulation?  

For example, if were a coalgebra homomorphism - Very strong notion of
“equivalence”!

But is there even such a bisimulation? NO.

ℱ
𝒢

𝒢

The semantics of Op-based CRDTs treat events as atomic (uninterruptible)

But there is no such requirement for and events on state-based CRDTs

𝗎𝗉𝖽(a) ↑ 𝖻𝖼i(m)

𝗎𝗉𝖽(a) 𝗌𝖾𝗇𝖽i→j(s)

Bisimulation Game

13

s1 = 0

s2 = 0

s1 = {}

s2 = {}

s1 = {⟨𝚒𝚗𝚌, 𝟷⟩} s1 = {⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩} s2 . 𝚖𝚎𝚛𝚐𝚎({⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩})

s1 . 𝚒𝚗𝚌(1) s1 . 𝚒𝚗𝚌(1) . 𝚒𝚗𝚌(3)

s1 . 𝚒𝚗𝚌(1) s1 . 𝚒𝚗𝚌(1) . 𝚒𝚗𝚌(3)

s2 . 𝚍𝚕𝚟𝚛(⟨𝚒𝚗𝚌, 𝟷⟩)

σ2 = {} σ2 = {⟨𝚒𝚗𝚌,1⟩} σ2 = {⟨𝚒𝚗𝚌, 𝟷⟩ ≺ ⟨𝚒𝚗𝚌, 𝟹⟩}

σ2 = {} σ2 = {{⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩}}

Bisimulation Game

14

s2 . 𝚖𝚎𝚛𝚐𝚎({⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩}) ⟹ q′￼(s2) = [[{⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩}]] = 4

s1 . 𝚒𝚗𝚌(1) . 𝚒𝚗𝚌(3) ⟹ q(s1) = 4

s1 . 𝚒𝚗𝚌(1) . 𝚒𝚗𝚌(3) ⟹ q′￼(s1) = [[{⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩}]] = 4

s2 . 𝚍𝚕𝚟𝚛(⟨𝚒𝚗𝚌, 𝟷⟩) ⟹ q(s2) = 1

Let be a map which interprets sets of messages to states

Define the query map

Define the query map

[[⋅]] : 𝒫fin(M) → S
q𝗈𝗉 = idS

q𝗌𝗍 = idS ∘ [[⋅]]

Background: CRDT Emulation and Equivalence

15

Despite this, the notion of emulation is “load bearing” in the CRDT
literature

Our contributions: We close this gap by showing that and induce

a pair of weak simulations between the original CRDT and its “emulator”

ℱ 𝒢

“…our techniques [on op-based CRDTs] naturally extends to state-based CRDTs

since they can be emulated by an op-based model…” - [Nagar et al., 2019]

“… [our work on synthesis of state-based CRDTs]… can always be translated

to op-based CRDTs if necessary…” - [Laddad et al., 2022]

Coinductive Reasoning about CRDT Emulation

16

Definition (Weak Simulation)

Let and be coalgebras of endofunctor  
and let be the reflexive, transitive closure of . 
 
A weak simulation of and is a relation s.t.

 if then

1.

2.

(X, (h, 𝗈𝖻𝗌1)) (Y, (g, 𝗈𝖻𝗌2)) 𝒫(−) × B
g* : Y → 𝒫(Y) g

(X, h) (Y, g) R ⊆ X × Y
∀(x, y) ∈ X × Y . (x, y) ∈ R,

𝗈𝖻𝗌1(x) = b ⟹ 𝗈𝖻𝗌2(y) = b
x′￼ ∈ h(x) ⟹ ∃y′￼ ∈ g*(y) ∧ (x′￼, y′￼) ∈ R

Definition (Op-based CRDT Systems)

Coinductive Reasoning about CRDT Emulation

17

α ∉ 𝚞𝚙𝚍𝚊𝚝𝚎 xj ⟶𝗈𝗉 x′￼j ↑ (a, m)

⟨α, (xi)i∈n⟩ ⇝𝗈𝗉 ⟨𝚞𝚙𝚍j(a, m), (xi)i∈n[xj ← x′￼j]⟩

⟨𝗎𝗉𝖽j(a, m), (xi)i∈n⟩ ⇝𝗈𝗉 ⟨𝖻𝖼 j(m), (x′￼i)i∈n⟩

α ∉ 𝚞𝚙𝚍𝚊𝚝𝚎 xj ⟶𝗈𝗉 x′￼j via deliver m

⟨α, (xi)i∈n⟩ ⇝𝗈𝗉 ⟨𝖽𝗅𝗏𝗋 j(m), (xi)i∈n[xj ← x′￼j]⟩

(x′￼i)i∈n = 𝚋𝚌𝚊𝚜𝚝j
m(xi)i∈n

[OpBroadcast]

[OpUpdate]

[OpDeliver]

(Events:) α := ⊤ ∣ 𝗎𝗉𝖽i(a, m) ∣ 𝖻𝖼i(m) ∣ 𝖽𝗅𝗏𝗋i(m)

Coinductive Reasoning about CRDT Emulation

18

Definition (State-based CRDT Systems)

xj = (sj, σj) xj ⟶𝗌𝗍 x′￼j (𝚞(sj, a), σj) = x′￼j

⟨α, (xi)i∈n⟩ ⇝𝗌𝗍 ⟨𝚞𝚙𝚍j(a), (xi)i∈n[xj ← x′￼j]⟩

⟨α, (xi)i∈n⟩ ⇝𝗌𝗍 ⟨𝗌𝖾𝗇𝖽i→j(si), (xi)i∈n[xj ← x′￼j]⟩

xj = (sj, σj) xj ⟶𝗌𝗍 x′￼j (sj ⊔ s, σj∖{s}) = x′￼j

⟨α, (xi)i∈n⟩ ⇝𝗌𝗍 ⟨𝖽𝗅𝗏𝗋 j(s), (xi)i∈n[xj ← x′￼j]⟩

xi = (si, σi) xj = (sj, σj) x′￼j = (sj, σj ∪ {si})
[StSend]

[StUpdate]

[StDeliver]

(Events:) α := ⊤ ∣ 𝗎𝗉𝖽i(a) ∣ 𝗌𝖾𝗇𝖽i→j(s) ∣ 𝖽𝗅𝗏𝗋i(s)

Weak Simulation (State-based Op-based)→

19

Theorem (Weak Simulation)

Let be the state-based CRDT system for and
 the op-based emulator CRDT system for . There are a pair of

weak simulations such that, 
1. is a weak simulation for

2. is a weak simulation for

(⇝𝗌𝗍 , q𝗌𝗍) c = ((S, ⊔), s0, u, q)
(⇝𝗈𝗉 , q𝗈𝗉) ℱ(c)

Q1 and Q2

Q1 (⇝𝗈𝗉 , q𝗈𝗉) and (⇝𝗌𝗍 , q𝗌𝗍)
Q2 (⇝𝗌𝗍 , q𝗌𝗍) and (⇝𝗈𝗉 , q𝗈𝗉)

Weak Simulation (Op-based State-based)→

20

Theorem (Weak Simulation)

Let be the op-based CRDT system for and
 the state-based emulator CRDT system for . There are a pair of

weak simulations such that, 
1. is a weak simulation for

2. is a weak simulation for

(⇝𝗈𝗉 , q𝗈𝗉) o = (S, s0, M, u, t, e, q)
(⇝𝗌𝗍 , q𝗌𝗍) 𝒢(o)

R1 and R2

R1 (⇝𝗈𝗉 , q𝗈𝗉) and (⇝𝗌𝗍 , q𝗌𝗍)
R2 (⇝𝗌𝗍 , q𝗌𝗍) and (⇝𝗈𝗉 , q𝗈𝗉)

Future Work

21

• It would be interesting to try to capture this notion of emulation
(translation + simulation) in higher generality. Perhaps in different
categories (e.g., Kleisli), perhaps with different systems.  

• Our model is based on more classical distributed systems theory (“vectors”
of transition systems) but is nonetheless coalgebraic. A general coalgebraic
treatment of distributed systems theory would be interesting - the challenge
is reconciling the different notions of “simulation” under coalgebraic lens 

• What are the interesting properties preserved by a translation +
simulation?

References

22

1. Shadaj Laddad et al. “Katara: Synthesizing CRDTs with Verified Lift-
ing”. In: Proc. ACM Program. Lang. 6.OOPSLA2 (2022). doi: 10.1145/
3563336. url: https://doi.org/10.1145/3563336.

2. Marc Shapiro et al. “Conflict-Free Replicated Data Types”. In: Stabiliza-
tion, Safety, and Security of Distributed Systems. Ed. by Xavier Défago,
Franck Petit, and Vincent Villain. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 386–400. isbn: 978-3-642-24550-3.

3. Kartik Nagar and Suresh Jagannathan. “Automated Parameterized Veri-
fication of CRDTs”. In: Computer Aided Verification. Ed. by Isil Dillig and
Serdar Tasiran. Cham: Springer International Publishing, 2019, pp. 459–
477. isbn: 978-3-030-25543-5.  
 
 

Questions?

