Coinductive Reasoning about CRDT Emulation

Nathan E. Liittschwager,
Stelios Tsampas,
Jonathan Castello,
Lindsey Kuper

Background: State Machine Replication

Imagine a service offered to a client in the form of a black-box with I/O behavior and internal state

The client inputs are requests in the form of commands $a \in A$ which update the internal state.

Client observations $b \in B$ are accessible by a query method call

Implement the service as a state machine (coalgebra):

$$
(u, q): X \rightarrow X^{A} \times B
$$

Background: State Machine Replication

To achieve fault tolerance the state machine $(u, q): X \rightarrow X^{A} \times B$ is replicated on n servers or nodes: $\left(u_{1}, q_{1}\right), \ldots,\left(u_{n}, q_{n}\right): X \rightarrow X^{A} \times B$ with same initial state $x \in X$

Client input seen as a totally ordered sequence $\left(a_{1}, \ldots, a_{k}\right) \in A^{*}$

Each replica $\left(x \in X,\left(u_{i}, q_{i}\right)\right)$ must compute the same sequence $\left(a_{1}, \ldots, a_{k}\right) \in A^{*}$, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can take its role

Background: State Machine Replication

To achieve fault tolerance the state machine $(u, q): X \rightarrow X^{A} \times B$ is replicated on n servers or nodes: $\left(u_{1}, q_{1}\right), \ldots,\left(u_{n}, q_{n}\right): X \rightarrow X^{A} \times B$ with same initial state $x \in X$

Client input seen as a totally ordered sequence $\left(a_{1}, \ldots, a_{k}\right) \in A^{*}$

Each replica $\left(x \in X,\left(u_{i}, q_{i}\right)\right)$ must compute the same sequence $\left(a_{1}, \ldots, a_{k}\right) \in A^{*}$, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can take its role

Background: State Machine Replication

To achieve fault tolerance the state machine $(u, q): X \rightarrow X^{A} \times B$ is replicated on n servers or nodes: $\left(u_{1}, q_{1}\right), \ldots,\left(u_{n}, q_{n}\right): X \rightarrow X^{A} \times B$ with same initial state $x \in X$

Client input seen as a totally ordered sequence $\left(a_{1}, \ldots, a_{k}\right) \in A^{*}$

Each replica $\left(x \in X,\left(u_{i}, q_{i}\right)\right)$ must compute the same sequence $\left(a_{1}, \ldots, a_{k}\right) \in A^{*}$, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can take its role

Background: CRDTs

Totally ordering commands $\left(a_{1}, \ldots, a_{k}\right) \in A^{*}$ non-trivial in asynchronous distributed systems

Conflict-free Replicated Data Types (CRDTs) solve this problem by by using data structures which don't require total order

Two major flavors of CRDT: "State-based" and "Operation-based"

Both achieve strong convergence - if they know about the same set of messages, they have the same state.

Background: State-Based CRDTs

State-based CRDTs use a join-semilattice (S, \sqcup) as the state-space

Updates must be inflationary: $s \sqcup \operatorname{upd}(s, a)=\operatorname{upd}(s, a)$ for all $s \in S, a \in A$

Background: Operation-based CRDTs

Operation-based CRDTs require messages (operations) be a partial order (M, \prec)

Each replica executes the same set of messages in a way consistent with $<$, communication is by broadcast

Background: CRDT Emulation and Equivalence

State-based and op-based CRDTs are often considered to be equivalent.

The reasoning is that they "emulate" each other: there are a pair of maps \mathscr{F}, \mathscr{G} to translate between the two types [Shapiro et al. 2011]

Definition (Emulation Maps)

State-based CRDT: ((S, ப), $\left.s_{0}, \mathrm{u}, \mathrm{q}\right) \quad$ Op-based CRDT: $\left(S, s_{0}, M, \mathrm{u}, \mathrm{t}, \mathrm{e}, \mathrm{q}\right)$

$$
\begin{aligned}
\left((S, \sqcup), s_{0}, \mathrm{u}, \mathrm{q}\right) & \stackrel{\mathscr{F}}{\mapsto}\left(S, s_{0}, S, \mathrm{u}, \mathrm{u}, \sqcup, \mathrm{q}\right) \\
\left(S, s_{0}, M, \mathrm{u}, \mathrm{t}, \mathrm{e}, \mathrm{q}\right) & \stackrel{\mathscr{G}}{\mapsto}\left(\left(\mathscr{P}_{\text {fin }}(M), \cup\right), \emptyset, \mathrm{u}^{\prime}, \mathrm{q}^{\prime}\right)
\end{aligned}
$$

where $\mathrm{u}^{\prime}(H, a)=H \cup\{\mathrm{t}(\llbracket H \rrbracket, a)\}$, and $\mathrm{q}^{\prime}(H)=\mathrm{q}(\llbracket H \rrbracket)$ and $\llbracket \cdot \rrbracket: \mathscr{P}_{\text {fin }}(M) \rightarrow S$ is appropriate map to translate sets of messages into state

Background: CRDT Emulation and Equivalence

Maps \mathscr{F} and \mathscr{G} are intuitively, potentially correct

But, emulation is not rigorously defined: no formal requirements on behavior, only informal arguments about strong eventual convergence

What if we defined \mathscr{F} to map each replica to a trivial state machine?

$$
\begin{aligned}
& S=\{s\} \\
& \forall a \in A \cdot u(s)(a)=s \\
& q(s)=\mathrm{T}
\end{aligned}
$$

Convergence!

Strong Bisimulation?

What if we required the original CRDT and the \mathscr{F}-emulator (or \mathscr{G}-emulator) to exhibit a bisimulation?

For example, if \mathscr{G} were a coalgebra homomorphism - Very strong notion of "equivalence"!

But is there even such a bisimulation?

Strong Bisimulation?

What if we required the original CRDT and the \mathscr{F}-emulator (or \mathscr{G}-emulator) to exhibit a bisimulation?

For example, if \mathscr{G} were a coalgebra homomorphism - Very strong notion of "equivalence"!

But is there even such a bisimulation? NO.
The semantics of Op-based CRDTs treat upd $(a) \uparrow \mathrm{bc}^{i}(m)$ events as atomic (uninterruptible)
But there is no such requirement for upd (a) and send ${ }^{i \rightarrow j}(s)$ events on state-based CRDTs

Bisimulation Game

Bisimulation Game

Let $\mathbb{I} \cdot \mathbb{\|}: \mathscr{P}_{\text {fin }}(M) \rightarrow S$ be a map which interprets sets of messages to states
Define the query map $q_{\text {op }}=i d_{S}$
Define the query map $q_{\mathrm{st}}=i d_{S} \circ \llbracket \cdot \mathbb{\rrbracket}$

$$
\begin{aligned}
s_{1} \cdot \operatorname{inc}(1) \cdot \operatorname{inc}(3) & \Longrightarrow q\left(s_{1}\right)=4 \\
s_{2} \cdot \operatorname{dlvr}(\langle\operatorname{inc}, 1\rangle) & \Longrightarrow q\left(s_{2}\right)=1 \\
s_{1} \cdot \operatorname{inc}(1) \cdot \operatorname{inc}(3) & \Longrightarrow q^{\prime}\left(s_{1}\right)=\llbracket\{\langle\text { inc, } 1\rangle,\langle\text { inc }, 3\rangle\} \rrbracket=4 \\
s_{2} \cdot \operatorname{merge}(\{\langle\operatorname{inc}, 1\rangle,\langle\operatorname{inc}, 3\rangle\}) & \Longrightarrow q^{\prime}\left(s_{2}\right)=\llbracket\{\langle\text { inc, } 1\rangle,\langle\text { inc }, 3\rangle\} \rrbracket=4
\end{aligned}
$$

Background: CRDT Emulation and Equivalence

Despite this, the notion of emulation is "load bearing" in the CRDT literature
"...our techniques [on op-based CRDTs] naturally extends to state-based CRDTs since they can be emulated by an op-based model..." - [Nagar et al., 2019]
"... [our work on synthesis of state-based CRDTs]... can always be translated to op-based CRDTs if necessary..." - [Laddad et al., 2022]

Our contributions: We close this gap by showing that \mathscr{F} and \mathscr{G} induce a pair of weak simulations between the original CRDT and its "emulator"

Coinductive Reasoning about CRDT Emulation

Definition (Weak Simulation)

Let $\left(X,\left(h\right.\right.$, obs $\left.\left._{1}\right)\right)$ and $\left(Y,\left(g\right.\right.$, obs $\left.\left._{2}\right)\right)$ be coalgebras of endofunctor $\mathscr{P}(-) \times B$ and let $g^{*}: Y \rightarrow \mathscr{P}(Y)$ be the reflexive, transitive closure of g.

A weak simulation of (X, h) and (Y, g) is a relation $R \subseteq X \times Y$ s.t.
$\forall(x, y) \in X \times Y$. if $(x, y) \in R$, then

1. $\mathrm{obs}_{1}(x)=b \Longrightarrow \mathrm{obs}_{2}(y)=b$
2. $x^{\prime} \in h(x) \Longrightarrow \exists y^{\prime} \in g^{*}(y) \wedge\left(x^{\prime}, y^{\prime}\right) \in R$

Coinductive Reasoning about CRDT Emulation

Definition (Op-based CRDT Systems)

$$
\begin{array}{cc}
\frac{\alpha \notin \text { update } x_{j} \longrightarrow_{\mathrm{op}} x_{j}^{\prime} \uparrow(a, m)}{\left\langle\alpha,\left(x_{i}\right)_{i \in n}\right\rangle \rightsquigarrow_{\mathrm{op}}\left\langle\operatorname{upd}^{j}(a, m),\left(x_{i}\right)_{i \in n}\left[x_{j} \leftarrow x_{j}^{\prime}\right]\right\rangle} & \text { [OpUpdate] } \\
\frac{\left(x_{i}^{\prime}\right)_{i \in n}=\operatorname{bcast}_{m}^{j}\left(x_{i}\right)_{i \in n}}{\left\langle\operatorname{upd}^{j}(a, m),\left(x_{i}\right)_{i \in n}\right\rangle \rightsquigarrow_{\mathrm{op}}\left\langle\mathrm{bc}^{j}(m),\left(x_{i}^{\prime}\right)_{i \in n}\right\rangle} & \text { [OpBroadcast] } \\
\alpha \notin \operatorname{update} x_{j} \longrightarrow_{\mathrm{op}} x_{j}^{\prime} \text { via deliver } m & \\
\left\langle\alpha,\left(x_{i}\right)_{i \in n}\right\rangle \rightsquigarrow_{\mathrm{op}}\left\langle\operatorname{dlvr}^{j}(m),\left(x_{i}\right)_{i \in n}\left[x_{j} \leftarrow x_{j}^{\prime}\right]\right\rangle & \text { [OpDeliver] }
\end{array}
$$

(Events: $\alpha:=\mathrm{T}\left|\operatorname{upd}^{i}(a, m)\right| \mathrm{bc}^{i}(m) \mid \mathrm{dlvr}^{i}(m)$)

Coinductive Reasoning about CRDT Emulation

Definition (State-based CRDT Systems)

$$
\begin{aligned}
& \begin{array}{cc}
x_{j}=\left(s_{j}, \sigma_{j}\right) \quad x_{j} \longrightarrow_{\mathrm{st}} x_{j}^{\prime} \quad\left(\mathrm{u}\left(s_{j}, a\right), \sigma_{j}\right)=x_{j}^{\prime} \\
\left\langle\alpha,\left(x_{i}\right)_{i \in n}\right\rangle \rightsquigarrow_{\mathrm{st}}\left\langle\operatorname{upd}^{j}(a),\left(x_{i}\right)_{i \in n}\left[x_{j} \leftarrow x_{j}^{\prime}\right]\right\rangle
\end{array} \quad[\text { StUpdate }] \\
& x_{i}=\left(s_{i}, \sigma_{i}\right) \quad x_{j}=\left(s_{j}, \sigma_{j}\right) \quad x_{j}^{\prime}=\left(s_{j}, \sigma_{j} \cup\left\{s_{i}\right\}\right) \\
& \left\langle\alpha,\left(x_{i}\right)_{i \in n}\right\rangle \rightsquigarrow_{\text {st }}\left\langle\operatorname{send}^{i \rightarrow j}\left(s_{i}\right),\left(x_{i}\right)_{i \in n}\left[x_{j} \leftarrow x_{j}^{\prime}\right]\right\rangle \\
& x_{j}=\left(s_{j}, \sigma_{j}\right) \quad x_{j} \longrightarrow_{\mathrm{st}} x_{j}^{\prime} \quad\left(s_{j} \sqcup s, \sigma_{j} \backslash\{s\}\right)=x_{j}^{\prime} \\
& \left\langle\alpha,\left(x_{i}\right)_{i \in n}\right\rangle \rightsquigarrow_{\text {st }}\left\langle\operatorname{dlvr}^{j}(s),\left(x_{i}\right)_{i \in n}\left[x_{j} \leftarrow x_{j}^{\prime}\right]\right\rangle \\
& \text { [StSend] } \\
& \text { (Events: } \left.\alpha:=\mathrm{T}\left|\operatorname{upd}^{i}(a)\right| \operatorname{send}^{i \rightarrow j}(s) \mid \mathrm{dlvr}^{i}(s)\right)
\end{aligned}
$$

Weak Simulation (State-based \rightarrow Op-based)

Theorem (Weak Simulation)

Let $\left(n_{\mathrm{st}}, q_{\mathrm{st}}\right)$ be the state-based CRDT system for $c=\left((S, \sqcup), s_{0}, u, q\right)$ and ($m_{\text {op }}, q_{\text {op }}$) the op-based emulator CRDT system for $\mathscr{F}(c)$. There are a pair of weak simulations Q_{1} and Q_{2} such that,

1. Q_{1} is a weak simulation for $\left(m_{\mathrm{op}}, q_{\mathrm{op}}\right)$ and $\left(m_{\mathrm{st}}, q_{\mathrm{st}}\right)$
2. Q_{2} is a weak simulation for $\left(m_{\mathrm{st}}, q_{\mathrm{st}}\right)$ and $\left(m_{\mathrm{op}}, q_{\mathrm{op}}\right)$

Theorem (Weak Simulation)

Let ($m_{\mathrm{op}}, q_{\mathrm{op}}$) be the op-based CRDT system for $o=\left(S, s_{0}, M, u, t, e, q\right)$ and $\left(\sim_{\mathrm{st}}, q_{\mathrm{st}}\right)$ the state-based emulator CRDT system for $\mathscr{G}(o)$. There are a pair of weak simulations R_{1} and R_{2} such that,

1. R_{1} is a weak simulation for ($m_{\mathrm{op}}, q_{\mathrm{op}}$) and $\left(m_{\mathrm{st}}, q_{\mathrm{st}}\right)$
2. R_{2} is a weak simulation for $\left(m_{\mathrm{st}}, q_{\mathrm{st}}\right)$ and $\left(m_{\mathrm{op}}, q_{\mathrm{op}}\right)$

- It would be interesting to try to capture this notion of emulation (translation + simulation) in higher generality. Perhaps in different categories (e.g., Kleisli), perhaps with different systems.
- Our model is based on more classical distributed systems theory ("vectors" of transition systems) but is nonetheless coalgebraic. A general coalgebraic treatment of distributed systems theory would be interesting - the challenge is reconciling the different notions of "simulation" under coalgebraic lens
- What are the interesting properties preserved by a translation + simulation?

1. Shadaj Laddad et al. "Katara: Synthesizing CRDTs with Verified Lifting". In: Proc. ACM Program. Lang. 6.OOPSLA2 (2022). doi: 10.1145/ 3563336. url: https://doi.org/10.1145/3563336.
2. Marc Shapiro et al. "Conflict-Free Replicated Data Types". In: Stabilization, Safety, and Security of Distributed Systems. Ed. by Xavier Défago, Franck Petit, and Vincent Villain. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 386-400. isbn: 978-3-642-24550-3.
3. Kartik Nagar and Suresh Jagannathan. "Automated Parameterized Verification of CRDTs". In: Computer Aided Verification. Ed. by Isil Dillig and Serdar Tasiran. Cham: Springer International Publishing, 2019, pp. 459477. isbn: 978-3-030-25543-5.

Questions?

