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Background: State Machine Replication

Imagine a service offered to a client in the form of a black-box with I/O 
behavior and internal state


The client inputs are requests in the form of commands  which update

the internal state. 
 
Client observations  are accessible by a query method call


Implement the service as a state machine (coalgebra):

a ∈ A

b ∈ B

(u, q) : X → XA × B
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Background: State Machine Replication
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To achieve fault tolerance the state machine  is

replicated on  servers or nodes:  with 
same initial state  
 
Client input seen as a totally ordered sequence 


Each replica  must compute the same sequence 
, thus obtain the same state (linearizability)


Fault tolerance achieved: if one replica goes down, another replica can

take its role

(u, q) : X → XA × B
n (u1, q1), …, (un, qn) : X → XA × B

x ∈ X

(a1, …, ak) ∈ A*

(x ∈ X, (ui, qi))
(a1, …, ak) ∈ A*
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Background: State Machine Replication

Non-trivial!

5

To achieve fault tolerance the state machine  is

replicated on  servers or nodes:  with 
same initial state  
 
Client input seen as a totally ordered sequence 


Each replica  must compute the same sequence 
, thus obtain the same state (linearizability)


Fault tolerance achieved: if one replica goes down, another replica can

take its role

(u, q) : X → XA × B
n (u1, q1), …, (un, qn) : X → XA × B

x ∈ X

(a1, …, ak) ∈ A*

(x ∈ X, (ui, qi))
(a1, …, ak) ∈ A*



Background: CRDTs

Totally ordering commands  non-trivial in asynchronous

distributed systems


Conflict-free Replicated Data Types (CRDTs) solve this problem by

by using data structures which don’t require total order 
 
Two major flavors of CRDT: “State-based” and “Operation-based”


Both achieve strong convergence - if they know about the same

set of messages, they have the same state.

(a1, …, ak) ∈ A*
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Background: State-Based CRDTs

s1 = 0

s2 = 0

s3 = 0

𝗎𝗉𝖽(s1, ⟨𝚒𝚗𝚌, 𝟻⟩)

𝗎𝗉𝖽(s1, ⟨𝚒𝚗𝚌, 𝟸⟩)

𝗌𝖾𝗇𝖽1→3(s1) 𝗌𝖾𝗇𝖽1→2(s1)

𝚖𝚊𝚡(s2, s1)

𝚖𝚊𝚡(s3, s1)

𝚖𝚊𝚡(s3, s2)

𝗌𝖾𝗇𝖽1→2(s1)

s1 = 5

s2 = 5

s3 = 5

State-based CRDTs use a join-semilattice  as the state-space


Updates must be inflationary:  for all 

(S, ⊔ )

s ⊔ 𝗎𝗉𝖽(s, a) = 𝗎𝗉𝖽(s, a) s ∈ S, a ∈ A
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Background: Operation-based CRDTs

s1 = 0

s2 = 0

s3 = 0

𝗎𝗉𝖽 ⋅ ⟨𝚒𝚗𝚌, 𝟻⟩ ↑ 𝖻𝖼1 ⋅ ⟨𝚒𝚗𝚌, 𝟻⟩

𝗎𝗉𝖽⟨𝚒𝚗𝚌, 𝟸⟩ ↑ 𝖻𝖼2⟨𝚒𝚗𝚌, 𝟸⟩

𝖽𝗅𝗏𝗋1←2(⟨𝚒𝚗𝚌, 𝟸⟩)

s1 = 7

s2 = 7

s3 = 7

𝖽𝗅𝗏𝗋2←1(⟨𝚒𝚗𝚌, 𝟻⟩)

𝖽𝗅𝗏𝗋3←2(⟨𝚒𝚗𝚌, 𝟸⟩)

𝖽𝗅𝗏𝗋3←1⟨𝚒𝚗𝚌, 𝟻⟩

Operation-based CRDTs require messages (operations) be a partial order 


Each replica executes the same set of messages in a way consistent with ,

communication is by broadcast

(M, ≺ )

≺
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Definition (Emulation Maps)
       

Background: CRDT Emulation and Equivalence
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State-based and op-based CRDTs are often considered to be equivalent.


The reasoning is that they “emulate” each other: there are a pair of maps 
 to translate between the two types [Shapiro et al. 2011] 

 
State-based CRDT:     Op-based CRDT: 


ℱ, 𝒢

((S, ⊔ ), s0, 𝚞, 𝚚) (S, s0, M, 𝚞, 𝚝, 𝚎, 𝚚)

prepare-msg
effect-msg  


     

((S, ⊔ ), s0, 𝚞, 𝚚) ℱ↦ (S, s0, S, 𝚞, 𝚞, ⊔ ,𝚚)

(S, s0, M, 𝚞, 𝚝, 𝚎, 𝚚) 𝒢↦ ((𝒫fin(M), ∪ ), Ø, 𝚞′￼, 𝚚′￼)

where , and 

and  is appropriate map to translate sets of messages into 
state


𝚞′￼(H, a) = H ∪ {𝚝([[H]], a)} 𝚚′￼(H) = 𝚚([[H]])
[[ ⋅ ]] : 𝒫fin(M) → S



Background: CRDT Emulation and Equivalence
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Maps  and  are intuitively, potentially correct 
 
But, emulation is not rigorously defined: no formal requirements on behavior,

only informal arguments about strong eventual convergence 
 
What if we defined  to map each replica to a trivial state machine? 
 

ℱ 𝒢

ℱ

a

s

S = {s}
∀a ∈ A . u(s)(a) = s
q(s) = ⊤ Convergence!



Strong Bisimulation?
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What if we required the original CRDT and the -emulator 

(or -emulator) to exhibit a bisimulation?  

For example, if  were a coalgebra homomorphism - Very strong notion of 
“equivalence”!


But is there even such a bisimulation? 

ℱ
𝒢

𝒢



Strong Bisimulation?
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What if we required the original CRDT and the -emulator 

(or -emulator) to exhibit a bisimulation?  

For example, if  were a coalgebra homomorphism - Very strong notion of 
“equivalence”!


But is there even such a bisimulation?   NO.

ℱ
𝒢

𝒢

The semantics of Op-based CRDTs treat  events as atomic (uninterruptible)


But there is no such requirement for  and  events on state-based CRDTs

𝗎𝗉𝖽(a) ↑ 𝖻𝖼i(m)

𝗎𝗉𝖽(a) 𝗌𝖾𝗇𝖽i→j(s)



Bisimulation Game
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s1 = 0

s2 = 0

s1 = {}

s2 = {}

s1 = {⟨𝚒𝚗𝚌, 𝟷⟩} s1 = {⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩} s2 . 𝚖𝚎𝚛𝚐𝚎({⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩})

s1 . 𝚒𝚗𝚌(1) s1 . 𝚒𝚗𝚌(1) . 𝚒𝚗𝚌(3)

s1 . 𝚒𝚗𝚌(1) s1 . 𝚒𝚗𝚌(1) . 𝚒𝚗𝚌(3)

s2 . 𝚍𝚕𝚟𝚛(⟨𝚒𝚗𝚌, 𝟷⟩)

σ2 = {} σ2 = {⟨𝚒𝚗𝚌,1⟩} σ2 = {⟨𝚒𝚗𝚌, 𝟷⟩ ≺ ⟨𝚒𝚗𝚌, 𝟹⟩}

σ2 = {} σ2 = {{⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩}}



Bisimulation Game

14

s2 . 𝚖𝚎𝚛𝚐𝚎({⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩}) ⟹ q′￼(s2) = [[{⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩}]] = 4

s1 . 𝚒𝚗𝚌(1) . 𝚒𝚗𝚌(3) ⟹ q(s1) = 4

s1 . 𝚒𝚗𝚌(1) . 𝚒𝚗𝚌(3) ⟹ q′￼(s1) = [[{⟨𝚒𝚗𝚌, 𝟷⟩, ⟨𝚒𝚗𝚌, 𝟹⟩}]] = 4

s2 . 𝚍𝚕𝚟𝚛(⟨𝚒𝚗𝚌, 𝟷⟩) ⟹ q(s2) = 1

Let  be a map which interprets sets of messages to states

Define the query map 

Define the query map 

[[ ⋅ ]] : 𝒫fin(M) → S
q𝗈𝗉 = idS

q𝗌𝗍 = idS ∘ [[ ⋅ ]]



Background: CRDT Emulation and Equivalence
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Despite this, the notion of emulation is “load bearing” in the CRDT 
literature


Our contributions: We close this gap by showing that  and  induce

a pair of weak simulations between the original CRDT and its “emulator”


ℱ 𝒢

“…our techniques [on op-based CRDTs] naturally extends to state-based CRDTs

since they can be emulated by an op-based model…” - [Nagar et al., 2019]

“… [our work on synthesis of state-based CRDTs]… can always be translated

to op-based CRDTs if necessary…” - [Laddad et al., 2022]



Coinductive Reasoning about CRDT Emulation
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Definition (Weak Simulation)

Let  and  be coalgebras of endofunctor  
and let  be the reflexive, transitive closure of . 
 
A weak simulation of  and  is a relation  s.t.


 if then

1. 

2.

(X, (h, 𝗈𝖻𝗌1)) (Y, (g, 𝗈𝖻𝗌2)) 𝒫( − ) × B
g* : Y → 𝒫(Y) g

(X, h) (Y, g) R ⊆ X × Y
∀(x, y) ∈ X × Y . (x, y) ∈ R,

𝗈𝖻𝗌1(x) = b ⟹ 𝗈𝖻𝗌2(y) = b
x′￼ ∈ h(x) ⟹ ∃y′￼ ∈ g*(y) ∧ (x′￼, y′￼) ∈ R



Definition (Op-based CRDT Systems)

Coinductive Reasoning about CRDT Emulation
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α ∉ 𝚞𝚙𝚍𝚊𝚝𝚎 xj ⟶𝗈𝗉 x′￼j ↑ (a, m)

⟨α, (xi)i∈n⟩ ⇝𝗈𝗉 ⟨𝚞𝚙𝚍j(a, m), (xi)i∈n[xj ← x′￼j]⟩

⟨𝗎𝗉𝖽j(a, m), (xi)i∈n⟩ ⇝𝗈𝗉 ⟨𝖻𝖼 j(m), (x′￼i)i∈n⟩

α ∉ 𝚞𝚙𝚍𝚊𝚝𝚎 xj ⟶𝗈𝗉 x′￼j via deliver m

⟨α, (xi)i∈n⟩ ⇝𝗈𝗉 ⟨𝖽𝗅𝗏𝗋 j(m), (xi)i∈n[xj ← x′￼j]⟩

(x′￼i)i∈n = 𝚋𝚌𝚊𝚜𝚝j
m(xi)i∈n

[OpBroadcast]

[OpUpdate]

[OpDeliver]

(Events: ) α := ⊤ ∣ 𝗎𝗉𝖽i(a, m) ∣ 𝖻𝖼i(m) ∣ 𝖽𝗅𝗏𝗋i(m)



Coinductive Reasoning about CRDT Emulation
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Definition (State-based CRDT Systems)

xj = (sj, σj) xj ⟶𝗌𝗍 x′￼j (𝚞(sj, a), σj) = x′￼j

⟨α, (xi)i∈n⟩ ⇝𝗌𝗍 ⟨𝚞𝚙𝚍j(a), (xi)i∈n[xj ← x′￼j]⟩

⟨α, (xi)i∈n⟩ ⇝𝗌𝗍 ⟨𝗌𝖾𝗇𝖽i→j(si), (xi)i∈n[xj ← x′￼j]⟩

xj = (sj, σj) xj ⟶𝗌𝗍 x′￼j (sj ⊔ s, σj∖{s}) = x′￼j

⟨α, (xi)i∈n⟩ ⇝𝗌𝗍 ⟨𝖽𝗅𝗏𝗋 j(s), (xi)i∈n[xj ← x′￼j]⟩

xi = (si, σi) xj = (sj, σj) x′￼j = (sj, σj ∪ {si})
[StSend]

[StUpdate]

[StDeliver]

(Events: ) α := ⊤ ∣ 𝗎𝗉𝖽i(a) ∣ 𝗌𝖾𝗇𝖽i→j(s) ∣ 𝖽𝗅𝗏𝗋i(s)



Weak Simulation (State-based  Op-based)→
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Theorem (Weak Simulation)

Let  be the state-based CRDT system for  and 
 the op-based emulator CRDT system for . There are a pair of


weak simulations  such that, 
1.  is a weak simulation for 

2.  is a weak simulation for 

( ⇝𝗌𝗍 , q𝗌𝗍) c = ((S, ⊔ ), s0, u, q)
( ⇝𝗈𝗉 , q𝗈𝗉) ℱ(c)

Q1 and Q2

Q1 ( ⇝𝗈𝗉 , q𝗈𝗉) and ( ⇝𝗌𝗍 , q𝗌𝗍)
Q2 ( ⇝𝗌𝗍 , q𝗌𝗍) and ( ⇝𝗈𝗉 , q𝗈𝗉)



Weak Simulation (Op-based  State-based)→
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Theorem (Weak Simulation)

Let  be the op-based CRDT system for  and 
 the state-based emulator CRDT system for . There are a pair of


weak simulations  such that, 
1.  is a weak simulation for 

2.  is a weak simulation for 

( ⇝𝗈𝗉 , q𝗈𝗉) o = (S, s0, M, u, t, e, q)
( ⇝𝗌𝗍 , q𝗌𝗍) 𝒢(o)

R1 and R2

R1 ( ⇝𝗈𝗉 , q𝗈𝗉) and ( ⇝𝗌𝗍 , q𝗌𝗍)
R2 ( ⇝𝗌𝗍 , q𝗌𝗍) and ( ⇝𝗈𝗉 , q𝗈𝗉)



Future Work
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• It would be interesting to try to capture this notion of emulation 
(translation + simulation) in higher generality. Perhaps in different 
categories (e.g., Kleisli), perhaps with different systems.  

• Our model is based on more classical distributed systems theory (“vectors” 
of transition systems) but is nonetheless coalgebraic. A general coalgebraic 
treatment of distributed systems theory would be interesting - the challenge 
is reconciling the different notions of “simulation” under coalgebraic lens 

• What are the interesting properties preserved by a translation + 
simulation?
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Questions?


