CMCS 2024

Nathan E. Luttschwager,

COi n d u Ctive Rea SOn i ng Stelios Tsampas,

Jonathan Castello,

abOUt CRDT EmU|at|On Lindsey Kuper

Background: State Machine Replication

Imagine a service offered to a client in the form of a black-box with 1/0O
behavior and internal state

The client inputs are requests in the form of commands a € A which update
the internal state.

Client observations b € B are accessible by a query method call

Implement the service as a state machine (coalgebra):

(u,q) : X - X*x B

Background: State Machine Replication

To achieve fault tolerance the state machine (i,q) : X = X* X B is
replicated on n servers or nodes: (uy,q,),...,(u,,q,) : X = X4 x B with

same initial state x € X

Client input seen as a totally ordered sequence (ay, ...,q,) € A*

Each replica (x € X, (u;, g;)) must compute the same sequence

(ai,...,a,) € A*, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can

take its role

Background: State Machine Replication

To achieve fault tolerance the state machine (i,q) : X = X* X B is
replicated on n servers or nodes: (uy,q,),...,(u,,q,) : X = X4 x B with

same initial state x € X

Client input seen as a totally ordered sequence (ay, ...,a;) € A*

Each replica (x € X, (u;, g;)) must compute the same sequence

(ai,...,a,) € A*, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can

take its role

Background: State Machine Replication

To achieve fault tolerance the state machine (i,q) : X = X* X B is
replicated on n servers or nodes: (uy,q,),...,(u,,q,) : X = X4 x B with

same initial state x € X

—

L o
Client input seen as a totally ordered sequence (ay, ...,a;) € A™ Non-trivial

Each replica (x € X, (u;, g;)) must compute the same sequence /
(ai,...,a,) € A*, thus obtain the same state (linearizability)

Fault tolerance achieved: if one replica goes down, another replica can

take its role

Background: CRDTs

Totally ordering commands (ay, ...,a,) € A* non-trivial in asynchronous

distributed systems

Conflict-free Replicated Data Types (CRDTs) solve this problem by
by using data structures which don't require total order

Two major flavors of CRDT: “State-based” and “Operation-based”

Both achieve strong convergence - it they know about the same
set of messages, they have the same state.

Background: State-Based CRDTs

State-based CRDTs use a join-semilattice (S, LI) as the state-space

Updates must be inflationary: s U upd(s,a) = upd(s,a) for all s € §S,a € A

upd(s, (inc,5)) send' 7 (s) send' ~*(s;)
55=0 — @ — @ @ 5 =5
upd(sy, (inc, 2)) "x< max(s,,)
=0 —@p——————— . & O ————O0——————— 5=
4
5=0 — b — 00 ;=

Background: Operation-based CRDTs

Operation-based CRDTs require messages (operations) be a partial order (M, <)

Each replica executes the same set of messages in a way consistent with <,
communication is by broadcast

upd - (inc,5) 1 be! - (inc, 5)

divr’(inc, 5)

Background: CRDT Emulation and Equivalence

State-based and op-based CRDTs are often considered to be equivalent.

The reasoning is that they “emulate” each other: there are a pair of maps
F, G to translate between the two types [Shapiro et al. 2011]

Definition (Emulation Maps)

State-based CRDT: (($,U),sp,u,q) Op-based CRDT: (S, sy, M,u, t,e,q)
((S,U),580,1,9) z (S, 59,9, u,u, LI ,g) \ effect-msg
@ prepare-msg
(S, 50, M,u,t,e,9) = (P,(M),), A,u’,q’)

where w(H, @) = HU {t([H],a)}, and o'(H) = q([H])
and [-]| : &;,(M) — § is appropriate map to translate sets of messages into

state

Background: CRDT Emulation and Equivalence

Maps & and & are intuitively, potentially correct

But, emulation is not rigorously defined: no formal requirements on behavior,
only informal arguments about strong eventual convergence

What if we defined & to map each replica to a trivial state machine?

d

S ={s}
Va€e A . u(s)a)=s

g(s) =T Convergence!

10

Strong Bisimulation?

What it we required the original CRDT and the F-emulator
(or &-emulator) to exhibit a bisimulation?

For example, if & were a coalgebra homomorphism - Very strong notion of
“equivalence’!

But is there even such a bisimulation?

11

Strong Bisimulation?

What it we required the original CRDT and the F-emulator
(or &-emulator) to exhibit a bisimulation?

For example, if & were a coalgebra homomorphism - Very strong notion of
“equivalence’!

But is there even such a bisimulation? NO.

The semantics of Op-based CRDTs treat upd(a) 1 bci(m) events as atomic (uninterruptible)

But there is no such requirement for upd(a) and send'~/(s) events on state-based CRDTs

12

Bisimulation Game

s; . inc(1) s;.inc(l).inc(3)
5= —¢—m-——————————
s, .dlvr({inc, 1))
4 4
5=0 —
o, ={} 0, = {(inc,1)} 0, = {(inc, 1) < (inc, 3)}
s;.inc(l) s;.inc(l). inc(3)
5={} ————————— ——
s; = {(inc, 1)} s; = {(inc, 1), (inc, 3)} ’

3 s, .merge({(inc, 1), (inc, 3)})
R S W
o, =1{} 0, = {{(1nc,1),(1nc,3)}}

13

Bisimulation Game

Let [- 1 : &4,(M) — § be a map which interprets sets of messages to states
Define the query map op = 1dg
Detine the query map g = idge [- ||

s;.inc(l).inc(3) = q(s) =4

s,.dlvr({inc, 1)) = g(s,) =1

s;.inc(1).inc(3) = ¢'(s;) = [{{inc, 1), (inc,3)}] =4
s, -merge({(inc, 1),(inc,3)}) = ¢'(s;) = [{(inc,1),(inc,3)}] =4

14

Background: CRDT Emulation and Equivalence

Despite this, the notion of emulation is “load bearing” in the CRDT
literature

“...our techniques [on op-based CRDTs| naturally extends to state-based CRDTs
since they can be emulated by an op-based model..."” - [Nagar et al., 2019]

“... [our work on synthesis of state-based CRDTs|... can always be translated
to op-based CRDTs if necessary...” - [Laddad et al., 2022]

Our contributions: We close this gap by showing that & and & induce
a pair of weak simulations between the original CRDT and its “emulator”

15

Coinductive Reasoning about CRDT Emulation

Definition (Weak Simulation)

Let (X, (h,0bs;)) and (Y, (g,0bs,)) be coalgebras of endofunctor *(—) X B

and let g* : Y - 9(Y) be the reflexive, transitive closure of g.

A weak simulation of (X, h) and (Y, g2) is a relation R C X X Y s.t.
Vix,y) e XX Y. if (x,y) €R,then

1. obsi(x) =b = obsy(y) =b

2. X € h(x) = dy'e g*() A(x,y) ER

16

Coinductive Reasoning about CRDT Emulation

Definition (Op-based CRDT Systems)

/

a & update x,—_, x; T (a,m)

] [OpUpdate}
<a9 (xi)i€n> W)op <updj(a9 m)a (xi)iEn[xj <~ x]{]>
(xi,)iEn — bca’St{;n(xi)iEn
. . |[OpBroadcast]
(upd’(a, m), (x);e,) op (DE'(M), (X))
a & update x; —, x; via deliver m
[OpDeliver]

<C¥, (‘xi)iEn> W)op <d|vrj(m)9 (xi)iEH['xj < X]{]>

(Events: a := T | upd'(a, m) | bc'(m) | divr'(m))

17

Coinductive Reasoning about CRDT Emulation

Definition (State-based CRDT Systems)

X =(5,0) Xi—>4 X (uls,a),o)=x

. [StUpdate]
<C¥, (xi)i€n> W>st (updf(a), (xi)iEn[xj < x],]>
X, =(8p0) X =(5,0) x=(s;,0;U {5;})
N [StSend]
(@, (X)ign) s (send™(sy), (X ienlX; < X1)
5= (500 g% (5Uso\{s)) =X
[StDeliver]

/

<C¥, (xi)i€n> W)st <d|VFj(S), (xi)iEn[xj S xj]>
(Events: a := T | upd'(a) | send (s) | dIvr(s))

18

Weak Simulation (State-based — Op-based)

Theorem (Weak Simulation)

Let (w ,q) be the state-based CRDT system for ¢ = ((S, U), sy, 4, g) and

(> op s Gop) the op-based emulator CRDT system for F(c). There are a pair of
weak simulations Q; and O, such that,

1. O, is a weak simulation for (w,, g,,) and (w , gg)

2. O, is a weak simulation for (g ,qg) and (., ,gyo)

19

Weak Simulation (Op-based — State-based)

Theorem (Weak Simulation)

Let (») be the op-based CRDT system for 0 = (S, 5o, M, u,t,¢e,q) and

» q
op ° 1op
(w4 »,qg) the state-based emulator CRDT system for &(0). There are a pair of
weak simulations R; and R, such that,

1. R, is a weak simulation for (op qop) and (w ,)

2. R, is a weak simulation for (w , gg) and (>, , gqp)

20

Future Work

e |t would be interesting to try to capture this notion of emulation
(translation 4 simulation) in higher generality. Perhaps in different
categories (e.g., Kleisli), perhaps with different systems.

e Our model is based on more classical distributed systems theory (“vectors”
of transition systems) but is nonetheless coalgebraic. A general coalgebraic
treatment of distributed systems theory would be interesting - the challenge
is reconciling the different notions of “simulation” under coalgebraic lens

e \What are the interesting properties preserved by a translation +
simulation?

21

References

1. Shadaj Laddad et al. “Katara: Synthesizing CRDTs with Verified Lift-
ing”". In: Proc. ACM Program. Lang. 6.00PSLA2 (2022). doi: 10.1145/
3563336. url: https://doi.org/10.1145/3563336.

2. Marc Shapiro et al. “Conflict-Free Replicated Data Types'. In: Stabiliza-
tion, Safety, and Security of Distributed Systems. Ed. by Xavier Défago,
Franck Petit, and Vincent Villain. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 386—400. isbn: 978-3-642-24550-3.

3. Kartik Nagar and Suresh Jagannathan. "Automated Parameterized Veri-
fication of CRDTs". In: Computer Aided Verification. Ed. by Isil Dillig and
Serdar Tasiran. Cham: Springer International Publishing, 2019, pp. 459-
A477. isbn: 978-3-030-25543-5.

22

Questions?

