CMCS 2024

Coinductive Reasoning about CRDT Emulation

Nathan E. Liittschwager,

Stelios Tsampas, Jonathan Castello, Lindsey Kuper

behavior and internal state

the internal state.

Client observations $b \in B$ are accessible by a *query* method call

Implement the service as a *state machine* (coalgebra):

Imagine a *service* offered to a *client* in the form of a black-box with I/O

The client inputs are *requests* in the form of *commands* $a \in A$ which update

- $(u,q): X \to X^A \times B$

same initial state $x \in X$

Client input seen as a totally ordered sequence $(a_1, \ldots, a_k) \in A^*$

Each replica ($x \in X, (u_i, q_i)$) must compute the same sequence $(a_1, \ldots, a_k) \in A^*$, thus obtain the same state (linearizability)

take its role

To achieve fault tolerance the state machine $(u,q): X \to X^A \times B$ is replicated on *n* servers or nodes: $(u_1, q_1), \ldots, (u_n, q_n) : X \to X^A \times B$ with

- Fault tolerance achieved: if one replica goes down, another replica can

same initial state $x \in X$

Client input seen as a totally ordered sequence $(a_1, \ldots, a_k) \in A^*$

Each replica ($x \in X, (u_i, q_i)$) must compute the same sequence $(a_1, \ldots, a_k) \in A^*$, thus obtain the same state (linearizability)

take its role

To achieve fault tolerance the state machine $(u,q): X \to X^A \times B$ is replicated on *n* servers or nodes: $(u_1, q_1), \ldots, (u_n, q_n) : X \to X^A \times B$ with

- Fault tolerance achieved: if one replica goes down, another replica can

To achieve fault tolerance the state machine $(u,q): X \to X^A \times B$ is same initial state $x \in X$

Client input seen as a totally ordered sequence $(a_1, \ldots, a_k) \in A^*$

Each replica ($x \in X, (u_i, q_i)$) must compute the same sequence $(a_1, \ldots, a_k) \in A^*$, thus obtain the same state (linearizability)

take its role

replicated on n servers or nodes: $(u_1, q_1), \ldots, (u_n, q_n) : X \to X^A \times B$ with

- Fault tolerance achieved: if one replica goes down, another replica can

Background: CRDTs

Totally ordering commands $(a_1, ..., distributed systems)$

Conflict-free Replicated Data Types (CRDTs) solve this problem by by using data structures which don't require total order

Two major flavors of CRDT: "State-based" and "Operation-based"

Both achieve *strong convergence* - if they know about the same set of messages, they have the same state.

Totally ordering commands $(a_1, ..., a_k) \in A^*$ non-trivial in asynchronous

Background: State-Based CRDTs

Updates must be *inflationary*: $s \sqcup upd(s, a) = upd(s, a)$ for all $s \in S, a \in A$

 $\max(s_3, s_1)$

Background: Operation-based CRDTs

Operation-based CRDTs require messages (operations) be a partial order (M, \prec)

Background: CRDT Emulation and Equivalence

State-based and op-based CRDTs are often considered to be equivalent.

 \mathcal{F}, \mathcal{G} to translate between the two types [Shapiro et al. 2011]

Definition (Emulation Maps)

State-based CRDT: $((S, \sqcup), s_0, u,$ $((S, \sqcup), s_0, \mathfrak{u}, \mathfrak{o})$

where $u'(H, a) = H \cup \{t(\llbracket H \rrbracket, a)\}, \text{ and } q'(H) = q(\llbracket H \rrbracket)$ and $\llbracket \cdot \rrbracket : \mathscr{P}_{fin}(M) \to S$ is appropriate map to translate sets of messages into state

The reasoning is that they "*emulate*" each other: there are a pair of maps

$$\begin{array}{ll} \mathsf{OT:} ((S,\sqcup),s_0,\mathtt{u},\mathtt{q}) & \mathsf{Op}\text{-based CRDT:} (S,s_0,M,\mathtt{u},\mathtt{t},\mathtt{e},\mathtt{q}) \\ ((S,\sqcup),s_0,\mathtt{u},\mathtt{q}) & \stackrel{\mathcal{F}}{\mapsto} (S,s_0,S,\mathtt{u},\mathtt{u},\sqcup,\mathtt{q}) & \overbrace{\qquad} & \overbrace{\qquad} & \overbrace{\qquad} & effect\text{-msg} \\ (S,s_0,M,\mathtt{u},\mathtt{t},\mathtt{e},\mathtt{q}) & \stackrel{\mathcal{G}}{\mapsto} ((\mathscr{P}_{fin}(M),\cup),\emptyset,\mathtt{u}',\mathtt{q}') & \end{array}$$

Background: CRDT Emulation and Equivalence

Maps \mathcal{F} and \mathcal{G} are intuitively, potentially correct

But, emulation is not rigorously defined: no formal requirements on behavior, only informal arguments about strong eventual convergence

What if we defined \mathcal{F} to map each replica to a trivial state machine?

$$S = \{s\}$$

$$\forall a \in A . u(s)(a) = s$$

$$q(s) = \top$$

Convergence!

What if we required the original CRDT and the \mathcal{F} -emulator (or \mathscr{G} -emulator) to exhibit a bisimulation?

For example, if \mathcal{G} were a coalgebra homomorphism - Very strong notion of "equivalence"!

But is there even such a bisimulation?

What if we required the original CRDT and the \mathcal{F} -emulator (or \mathcal{G} -emulator) to exhibit a bisimulation?

"equivalence"!

But is there even such a bisimulation? NO.

- For example, if \mathcal{G} were a coalgebra homomorphism Very strong notion of

- The semantics of Op-based CRDTs treat $upd(a) \uparrow bc^{l}(m)$ events as *atomic* (uninterruptible)
- But there is **no** such requirement for upd(a) and $send^{i \rightarrow j}(s)$ events on state-based CRDTs

Bisimulation Game

Bisimulation Game

Let $\llbracket \cdot \rrbracket : \mathscr{P}_{fin}(M) \to S$ be a map which interprets sets of messages to states Define the query map $q_{op} = id_S$ Define the query map $q_{st} = id_S \circ \llbracket \cdot \rrbracket$

 $s_1.inc(1).inc(3)$

 $s_2.\operatorname{dlvr}(\langle \operatorname{inc}, 1 \rangle) \implies q(s_2) = 1$

 $s_1.inc(1).inc(3)$

 s_2 .merge({ $\langle inc, 1 \rangle, \langle inc, 3 \rangle$ })

$$\implies q(s_1) = 4$$

$$\implies q'(s_1) = \llbracket \{ \langle \text{inc}, 1 \rangle, \langle \text{inc}, 3 \rangle \} \rrbracket = 4$$
$$\implies q'(s_2) = \llbracket \{ \langle \text{inc}, 1 \rangle, \langle \text{inc}, 3 \rangle \} \rrbracket = 4$$

Despite this, the notion of emulation is "load bearing" in the CRDT literature

"...our techniques [on op-based CRDTs] naturally extends to state-based CRDTs since they can be emulated by an op-based model..." - [Nagar et al., 2019]

"... [our work on synthesis of state-based CRDTs]... can always be translated to op-based CRDTs if necessary..." - [Laddad et al., 2022]

Our contributions: We close this gap by showing that \mathscr{F} and \mathscr{G} induce a pair of *weak simulations* between the original CRDT and its "emulator"

Definition (Weak Simulation)

Let $(X, (h, obs_1))$ and $(Y, (g, obs_2))$ be coalgebras of endofunctor $\mathscr{P}(-) \times B$ and let $g^* : Y \to \mathscr{P}(Y)$ be the *reflexive, transitive closure* of g.

A weak simulation of (X, h) and (Y, g) is a relation $R \subseteq X \times Y$ s.t. $\forall (x, y) \in X \times Y$. if $(x, y) \in R$, then

1. $obs_1(x) = b \implies obs_2(y) = b$

2. $x' \in h(x) \implies \exists y' \in g^*(y) \land (x', y') \in R$

Definition (Op-based CRDT Systems) $\alpha \notin \text{update}$ $\langle \alpha, (x_i)_{i \in n} \rangle \rightsquigarrow_{op} \langle u \rangle$ $(x'_i)_{i\in n} =$ $\langle \mathsf{upd}^{j}(a,m), (x_{i})_{i \in I} \rangle$ $\alpha \notin \text{update}$ X

$$x_j \longrightarrow_{op} x'_j \uparrow (a, m)$$

$$\operatorname{pd}^{j}(a,m), (x_{i})_{i\in n}[x_{j}\leftarrow x_{j}']\rangle$$

$$= bcast_m^j(x_i)_{i \in n}$$

$$_{\in n} \rangle \rightsquigarrow_{\mathrm{op}} \langle \mathsf{bc}^{j}(m), (x'_{i})_{i \in n} \rangle$$

$$x_j \longrightarrow_{op} x'_j$$
 via deliver m

 $\langle \alpha, (x_i)_{i \in n} \rangle \rightsquigarrow_{op} \langle \mathsf{dlvr}^j(m), (x_i)_{i \in n} [x_i \leftarrow x'_j] \rangle$

[OpUpdate]

[OpBroadcast]

(Events: $\alpha := T \mid upd^{i}(a, m) \mid bc^{i}(m) \mid dlvr^{i}(m)$)

$$\begin{array}{l} \underset{k \in i}{\rightarrow} \underset{k \in i}{\rightarrow$$

(Events: $\alpha := T \mid upd^{i}(a) \mid send^{i \rightarrow j}(s) \mid dlvr^{i}(s)$)

Theorem (Weak Simulation)

Let $(\rightsquigarrow_{st}, q_{st})$ be the state-based CRDT system for $c = ((S, \sqcup), s_0, u, q)$ and $(\rightsquigarrow_{op}, q_{op})$ the op-based *emulator* CRDT system for $\mathscr{F}(c)$. There are a pair of weak simulations Q_1 and Q_2 such that, 1. Q_1 is a weak simulation for $(\rightsquigarrow_{op}, q_{op})$ and $(\rightsquigarrow_{st}, q_{st})$ 2. Q_2 is a weak simulation for $(\rightsquigarrow_{st}, q_{st})$ and $(\rightsquigarrow_{op}, q_{op})$

Theorem (Weak Simulation)

Let $(\rightsquigarrow_{op}, q_{op})$ be the op-based CRDT system for $o = (S, s_0, M, u, t, e, q)$ and $(\rightsquigarrow_{st}, q_{st})$ the state-based *emulator* CRDT system for $\mathscr{G}(o)$. There are a pair of weak simulations R_1 and R_2 such that, 1. R_1 is a weak simulation for $(\rightsquigarrow_{op}, q_{op})$ and $(\rightsquigarrow_{st}, q_{st})$ 2. R_2 is a weak simulation for $(\rightsquigarrow_{st}, q_{st})$ and $(\rightsquigarrow_{op}, q_{op})$

Future Work

- It would be interesting to try to capture this notion of *emulation* (translation + simulation) in higher generality. Perhaps in different categories (e.g., Kleisli), perhaps with different systems.
- What are the interesting properties preserved by a translation + simulation?

• Our model is based on more classical distributed systems theory ("vectors" of transition systems) but is nonetheless coalgebraic. A general coalgebraic treatment of distributed systems theory would be interesting - the challenge is reconciling the different notions of "simulation" under coalgebraic lens

References

- 3563336. url: https://doi.org/10.1145/3563336.
- delberg, 2011, pp. 386–400. isbn: 978-3-642-24550-3.
- 477. isbn: 978-3-030-25543-5.

1. Shadaj Laddad et al. "Katara: Synthesizing CRDTs with Verified Lifting". In: Proc. ACM Program. Lang. 6.00PSLA2 (2022). doi: 10.1145/

2. Marc Shapiro et al. "Conflict-Free Replicated Data Types". In: Stabilization, Safety, and Security of Distributed Systems. Ed. by Xavier Défago,

Franck Petit, and Vincent Villain. Berlin, Heidelberg: Springer Berlin Hei-

3. Kartik Nagar and Suresh Jagannathan. "Automated Parameterized Verification of CRDTs". In: Computer Aided Verification. Ed. by Isil Dillig and Serdar Tasiran. Cham: Springer International Publishing, 2019, pp. 459-

Questions?