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What led me here



A formal theory of categ-automata

I work in the group of P. Sobocinski in Tallinn.

> ‘you should look into automata theory, you might like it’

It was true.
The contact between automata theory and category theory is fertile
an illustrious.

> What can a pure category theorist give to this field? What
can they learn to become better category theorists?



A formal theory of categ-automata

e One can organise Mealy and Moore automata in categories;

¢ such categories have neat characterizations and enjoy (of
course) universal properties;

e anatural language to study these gadgets is 2-dimensional
category theory;

e the clearest way of doing 2-category theory is formally.

But wait, formal category theory is what I (try to) do!



A formal theory of categ-automata

e ‘Automata’ seen as categories enriched over the monoidally
cocomplete poset of subsets of their input;’

e realization and behaviour (have univ. prop’s and) define a local
adjunction of bicategories (one of the weakest kind of
equivalence of bicategories).

("worth noting: this approach is made in Italy)

UNA PROPRIETA’ DEL COMPORTAMENTO
PER GLI AUTOMI COMPLETI (*)

di RENATO BETTI e STEFANO KASANGIAN (a Milano) (**)



A formal theory of categ-automata

An insightful idea of Katis, Sabadini and Walters recognized that
categories of automata organize themselves as the hom-categories of
a bicategory.

Consider a monoidal category K as a bicategory 3/C with a single
objects; take pseudofunctors N — X /C, lax natural transformations,
modification.

Such bicategory can be seen as a lax analogue of a staple
construction in stable homotopy theory.



A formal theory of categ-automata

Between 1974 and 1980, R. Guitart introduces a bicategory Mac of
(Mealy) ‘machines’ tweaking the def’n of bicategory of spans.

In a very technical paper, Guitart lays the foundation to prove that
Mac is simply the Kleisli bicategory of the 2-monad of cocompletion
under lax colimits (‘monades des diagrammes’).



A formal theory of categ-automata

Recently, Bob Paré proposed the notion of a Mealy morphism as a
proxy between strong functors and profunctors in any V-enriched
category C.

The paper culminates in the impressively general and elegant result
that the bicategory of V-Mealy maps is simply the Kleisli bicategory
of the lax idempotent 2-monad of V-copower completion.

Paré generalises, in one fell swoop, KSW and Guitart’s approach to
every suitably nice base of enrichment.



A formal theory of categ-automata

There is a pattern, a theme buried under these results.
Formal category theory is the best way to elucidate it.
e categories that naturally arise organizing ‘machines’ of sorts

share a universal property of Kleisli type (they are categories of
free algebras for a monad);

e the monad in question is ‘of property type’, i.e. itis a lax
idempotent 2-monad of cocompletion under certain shapes.

Unveiling this pattern has been my interest for the last year or so.



Abstract automata



Let C be a strict 2-category with all finite weighted limits.

Fix a 0-cell C, an endo-1-cell f : C — Cand consider as building
blocks of our theory

e theinserteru: I(f,1¢) — Cor ‘object of algebras’ for f;

e forevery b : B — Cthe comma object C/b (equipped with its
canonical projection C/b — C);

e the comma object (f/b) — C.



Then, the object of (f, b)-Mealy machines is the strict 2-pullback on
the left of

Mly(f, b) — (f/b) Mre(f,b) —C/b
_ _

e

I(fa:LC)%C I(faj-C)—)C

and the object of (f, b)-Moore machines is the pullback on the right.

As such, Mly and Mre are parametric functors of type

C(C,C)® x €/C—=C/C



IfC = Catand b : 1 — Cis a single object, these definitions specialize to

o the category of Mealy automata, where objects and morphisms are of
the form
d

E~' FE— B
Y Y
E <—FE’H—B

o the category of Moore automata, where objects and morphisms are of
the form
E

FE E-* B
\% \% Y

El<~—FF F —-B



In particular, if F4 : K — K is the functor that tensors by an object A (an
‘Alphabet’), Mealy and Moore automata are respectively diagrams of the
form (E, d,s):

E<% AQE—>B
and of the form
E< % AQEE—°-8

Mly(A,B) ——=A® _/B Mre(A,B) —— K/B
_] _]

i i | 2

AlgA® _) K AEAR_) ——=K

The right level of generality is: K = Cat, ambient category is monoidal, but F
is a generic endofunctor (compatible with ®).



Definition (The total categories of automata)

(F,B) — Mly(F, B) is a (pseudo)functor of type
Mly : Cat(/C, K)°P x K — Cat, from which we can extract a
two-sided fibration

P

Cat(k, K) My K

whose tip My we call the total Mealy category.

Similar considerations allow to construct the total Moore category
Mre.



If I is monoidal its tensor functor _ ® — : K x K — K now curries to

K——Cat(L,K):A—» AR —

we can pullback the total Mealy fibration:
Mey® Mty

L2

K% x K —— Cat(/C, K)% x K
AP X IC

which gives rise to the monoidal Mealy (two-sided) fibration

® ®
K< Mmey® T i



Species



Goal: focus on the category of combinatorial species.

Definition

Let S be aset and V a symmetric monoidal closed, complete and
cocomplete, base of enrichment. The category of (S, ))-species is
defined as the free symmetric monoidally cocomplete V-category on
S (regarded as discrete).

S P(S) —— {P(S) — V}.

aset free symmon-V-caton S (co)presheaves

In particular, the category [P{1), Set] of (1, Set)-species is called
just ‘the category Spc of species’.



More concretely, Spc is the category of representations of the
groupoid obtained as the coproduct (in Gpd) 3, &, of all
symmetric groups.

e The species g of subsets sends an n-set A to the 2"-set of all its
subsets;

e The species Lin of total orders sends [n] to the set of total orders on
[n], identified with the set |S,| of bijections of [n], over which S,, acts
by left multiplication.

e The species Sym of permutations sends each finite set [n] into the
(carrier of the) symmetric group on n letters, S,.

e The species Cyc of oriented cycles sends a finite set [n] to the set of
cylic orderings of {x1, ..., Xs}.



Spc is fairly rich of structure:

e itis complete and cocomplete (hence it carries the Cartesian
and coCartesian monoidal structures);

e it carries the pointwise monoidal product of V;

e it carries the Day convolution monoidal structure:
AB
H® K := / HA x KB x hom(A® B, _)

e it carries the substitution monoidal structure.

All these (closed) monoidal structures are tightly related.



Species as a differential 2-rig

Moreover, Spc is a (cocomplete) differential 2-rig:

Definition

A (symmetric) differential 2-rig is a (symmetric) monoidal category
(R, ®,I) such that

e X® _,_® Ydistribute over coproducts;
o there is an endofunctor ¢ : R — R which is linear (preserves

coproducts) and Leibniz:

oX®Y)=odX®Y+X® Y

naturally in X, Y.

Itisinfact a very well-behaved differential 2-rig: the derivative
functor 0 has both a left and a right adjoint: L 4 ¢ — R.



Automata in species as a differential 2-rig

Let (R, ®, I) be a differential 2-rig; then M/y 1 as def’d above
becomes a differential 2-rig with a canonical choice of derivative
functor 0 : Mlyr — Mlyg suchthat 9(E,d,s) = (CE, ..., ...).
Corollary B

The category MU{ysy is a differential 2-rig such that ¢ preserves all
limits and colimits.

Since M/ysp is also locally presentable, 0: MUlyspe — MULygpe has
a left and a right adjoint as well.



The fourfold way

Recall: L - & - R.

In order to study Mly, Mre based on Spc, one has to understand the
pieces of the pullbacks before:

Mlys,,(F,B) —F_/B Mreg,c(A,B) — K/B

| 2 | ]

Alg(F) K Alg(F) K

and in particular, co/algebras for left adjoints F(H #), so that
co/limits in Mly(F, B), Mre(F, B) are particularly easy to compute.

There are various choices for F(— #): the functor L; the functor ¢; the
functor Lo; the functor JL.

This could be called the fourfold way.



The fourfold way

The category Mlys,,(L, B) is modeled over the category Spct,
equivalently described as

o the category of endofunctor algebras for L = y[1] ® _;

e the category of endofunctor coalgebras for 0;

e the Eilenberg—Moore category of the monad Lin ® _;

o the coEilenberg-Moore category of the comonad {Lin, —}pay.

Note the def’n of L  0; {Lin, —}pay is the internal hom for Day convolution.



The fourfold way

One can study L@, dL as mere endofunctors (plain dynamics) or qua
comonad and monad respectively (monadic dynamics), taking
Eilenberg—Moore algebras instead of endofunctor algebras in the
definition of Mly(T, B).

Co/monadic dynamics seems a relatively unexplored part of the
theory, and rather unrewarding for a variety of reasons. (There can be
a conceptual explanation of this.)



The fourfold way

First step: explicit formulas for the monad and comonad in study.

e LOHacts as y[1] ® 0H; a structure of type LoH on a finite set A chooses
a point of A, and an H-structure on the complement of that point.

o RoOHactsasA — [[,a H[(A N {a}) L {o}],ie. asA — HA%; a
structure of type ROH on a finite set A chooses an H-structure on A for
every a € A. With a similar reasoning,

e OLH = d(y[1] ® H) is the functor H + LoH;* note in particular that the
unit of the monad oL is the first coproduct injection.

e ORHacts as A — H[A]" x H[A] = ROH[A] x H[A]; note in particular
that the counit of the comonad is the second product projection.

This gives rise to the evocative formula: [0, L] = dL — Ld = 1, i.e. to the canonical
commutation relation between position and momentum (up to a sign).



The fourfold way

Recipe:

e fixan interesting species H;
e outline what a Lo-algebra structure on H amounts to;

e some times it might be easier to describe a Ro-coalgebra
structure;

e deduce interesting properties of the category Mly(Lo, B) for
different choices of output object B;

o do the same for dL-coalgebras (=0R-algebras).



What now?



o Differential equations. The canonical commutation
[0,L] = 0L — Lo = 1valid in Joyal’s virtual species suggests the
existence of a categorified ‘Heaviside distribution” © with the
property that the colimit of F weighted by © is a solution of the
differential equation 0G = F on species.

e Even more abstract machines. Defining ‘machines’ as limit
diagrams obtained from diagrams

X X X X B
1 f f b

is powerful: one can define analogues for Mly(A, B), Mre(A, B)
enriched over a generic monoidal base W, so that now there is a
metric space Mly y ) (f, b) associated to every nonexpansive
map f: X — Xand point b € X.



