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Today’s topic
● a coinductive technique for 

quantitative equational reasoning on effectful programs
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Muroya (RIMS, Kyoto U.)

Quantitative equational reasoning

● “  behaves the same as  

and  terminates with a less number of steps” 

●  

● (basic) quantitative notion of observational refinement

p p′ 

p′ 

p ⇓n ⟹ p′ ⇓m ∧ n ≥ m
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Muroya (RIMS, Kyoto U.)

Quantitative equational reasoning

● “  behaves the same as  

and  terminates with a certain number of steps” 

●  

given a “length preorder”  

● (basic) quantitative notion of observational refinement

p p′ 

p′ 

(p ⇓n ⟹ p′ ⇓m ∧ n Q m)
Δ

⟺ p ⪯Q p′ 

Q ⊆ ℕ × ℕ
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A coinductive approach
● stepwise reasoning on execution traces, using 

nondeterministic automata 

● e.g. standard simulation 

● (FYI: simulation is the asymmetric version of bisimulation) 

●  

　　　　  such that 

 

 

 

p ⪯= p′ 
Δ

⟺ (p ⇓n ⟹ p′ ⇓m ∧ n = m)
⟸ p R p′ 
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23:6 Preorder-Constrained Simulations for Program Refinement with E�ects
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Figure 4 Conditions of Def. 4. Black parts are universally quantified, and magenta parts are
existentially quantified.
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xÕÕ
”œ F1). A term err() œ T�err is an example of such a state in A�err . Lastly, C-Step (2) is175

the key condition of Def. 4. It asserts that any transition x
a xÕ followed by some transitions176

xÕ w  xÕÕ in A1 can be simulated by some transitions y
wÕ

  yÕ in A2.177

Thanks to C-Step, which compares not just single steps but numbers of steps, counting178

simulation can witness refinement for exception succinctly. In Ex. 6 below, the relation Rdistr179

represents the distributive law, without relating any intermediate states.180

I Proposition 5 (correctness wrt. refinement). If R is a Q-counting simulation from A�err to181

A�err , then tRu =∆ t ∞
Q
err u holds for any t, u œ T�err . J182

I Example 6. For the pair of branching-free NAs in Fig. 3a, a relation Rdistr = {(2 ◊ (3 +183

4), 2 ◊ 3 + 2 ◊ 4), (X,X)} is a Æ-counting simulation. The length preorder Æ asserts that184

2 ◊ (3 + 4) has better e�ciency. The only stuck states in the NAs are accepting states, so185

C-Step (1) does not apply. Instead, C-Step (2) applies to the pair (2 ◊ (3 + 4), 2 ◊ 3 + 2 ◊ 4).186

Although counting simulation can witness refinement for exception, that is not the case187

for branching e�ects such as nondeterminism and I/O. This is due to two challenges.188

The first challenge is varying observation. While we ignore e�ect traces for nondeterminism,189

we observe e�ect traces for I/O. However, counting simulation can neither ignore nor observe190

e�ect traces correctly. It simply compares the lengths of traces using the length preorder Q.191

The second challenge is branching. Counting simulation is only correct for branching-free192

e�ects such as exception; it becomes unsound for branching e�ects, e.g. I/O.193

I Example 7 (unsoundness for I/O). For the pair of NAs in Fig. 6, refinement does not194

hold, i.e. 1 + 2 + in(0, 0 + 1) ”∞io in(1 + 2 + 0, 5), because right branches have traces195

·in1··4 ”=rem· in15. However, a relation {(1 + 2 + in(0, 0 + 1), in(1 + 2 + 0, 5)), (X,X)}196

is an =-counting simulation. It only asserts that left branches have “identical” traces (i.e.197

·in0·3 and in0··3), and it does not inspect the right branches with distinct traces.198

This unsoundness is because counting simulation does not necessarily inspect all possibilities of199

branching. Technically, this is due to the existential quantification on xÕ w  xÕÕ in C-Step (2).200

4 Preorder-Constrained Simulation201

We present our main contribution, the notion of preorder-constrained simulation. It generalises202

counting simulation from branching-free NAs to general NAs, and hence characterises a203
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Counting simulation [M. 2020]

● stepwise reasoning on execution traces, using 

nondeterministic automata 

● parameterised by a length preorder  

● (FYI: simulation is the asymmetric version of bisimulation) 

●  

　　　　  such that 

 

 

 

Q ⊆ ℕ × ℕ

p ⪯Q p′ 
Δ

⟺ (p ⇓n ⟹ p′ ⇓m ∧ n Q m)
⟸ p R p′ 
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Figure 5 Unsoundness of counting simulation
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for branching e�ects such as nondeterminism and I/O. This is due to two challenges.188

The first challenge is varying observation. While we ignore e�ect traces for nondeterminism,189

we observe e�ect traces for I/O. However, counting simulation can neither ignore nor observe190

e�ect traces correctly. It simply compares the lengths of traces using the length preorder Q.191

The second challenge is branching. Counting simulation is only correct for branching-free192

e�ects such as exception; it becomes unsound for branching e�ects, e.g. I/O.193

I Example 7 (unsoundness for I/O). For the pair of NAs in Fig. 5, refinement does not194

hold, i.e. 1 + 2 + in(0, 0 + 1) ”∞io in(1 + 2 + 0, 5), because right branches have traces195

·in1··4 ”=rem· in15. However, a relation {(1 + 2 + in(0, 0 + 1), in(1 + 2 + 0, 5)), (X,X)}196

is an =-counting simulation. It only asserts that left branches have “identical” traces (i.e.197
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This unsoundness is because counting simulation does not necessarily inspect all possibilities of199

branching. Technically, this is due to the existential quantification on xÕ w  xÕÕ in C-Step (2).200

23:6 Preorder-Constrained Simulations for Program Refinement with E�ects

x yR

(a) C-Final

x

xÕ

xÕÕ

y
a

w

R

(b) C-Step (1) where xÕÕ ” 

x

xÕ

xÕÕ

y

yÕ

a

w

wÕ
R

R

(c) C-Step (2) where |aw|Q|wÕ|

Figure 4 Conditions of Def. 4. Black parts are universally quantified, and magenta parts are
existentially quantified.

1 + 2 + in(0, 0 + 1)

3 + in(0, 0 + 1)

3 + 0 3 + (0 + 1)

3 3 + 1

4X

·

in0 in1

· ·

3 ·4

in(1 + 2 + 0, 5)

1 + 2 + 0 5

3 + 0

3
X

in0 in1

·

·

3

5

Figure 5 Unsoundness of counting simulation

xÕÕ
”œ F1). A term err() œ T�err is an example of such a state in A�err . Lastly, C-Step (2) is175

the key condition of Def. 4. It asserts that any transition x
a xÕ followed by some transitions176
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  yÕ in A2.177

Thanks to C-Step, which compares not just single steps but numbers of steps, counting178

simulation can witness refinement for exception succinctly. In Ex. 6 below, the relation Rdistr179

represents the distributive law, without relating any intermediate states.180

I Proposition 5 (correctness wrt. refinement). If R is a Q-counting simulation from A�err to181

A�err , then tRu =∆ t ∞
Q
err u holds for any t, u œ T�err . J182

I Example 6. For the pair of branching-free NAs in Fig. 3a, a relation Rdistr = {(2 ◊ (3 +183

4), 2 ◊ 3 + 2 ◊ 4), (X,X)} is a Æ-counting simulation. The length preorder Æ asserts that184

2 ◊ (3 + 4) has better e�ciency. The only stuck states in the NAs are accepting states, so185

C-Step (1) does not apply. Instead, C-Step (2) applies to the pair (2 ◊ (3 + 4), 2 ◊ 3 + 2 ◊ 4).186

Although counting simulation can witness refinement for exception, that is not the case187

for branching e�ects such as nondeterminism and I/O. This is due to two challenges.188

The first challenge is varying observation. While we ignore e�ect traces for nondeterminism,189

we observe e�ect traces for I/O. However, counting simulation can neither ignore nor observe190

e�ect traces correctly. It simply compares the lengths of traces using the length preorder Q.191

The second challenge is branching. Counting simulation is only correct for branching-free192

e�ects such as exception; it becomes unsound for branching e�ects, e.g. I/O.193

I Example 7 (unsoundness for I/O). For the pair of NAs in Fig. 5, refinement does not194

hold, i.e. 1 + 2 + in(0, 0 + 1) ”∞io in(1 + 2 + 0, 5), because right branches have traces195

·in1··4 ”=rem· in15. However, a relation {(1 + 2 + in(0, 0 + 1), in(1 + 2 + 0, 5)), (X,X)}196

is an =-counting simulation. It only asserts that left branches have “identical” traces (i.e.197

·in0·3 and in0··3), and it does not inspect the right branches with distinct traces.198

This unsoundness is because counting simulation does not necessarily inspect all possibilities of199

branching. Technically, this is due to the existential quantification on xÕ w  xÕÕ in C-Step (2).200
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Counting simulation [M. 2020]

● stepwise reasoning on execution traces, using 

nondeterministic automata 

●  

　　　　  such that 

 

 

 

● soundness only for “deterministic” programs 

● or “branching-free” automata

p ⪯Q p′ 
Δ

⟺ (p ⇓n ⟹ p′ ⇓m ∧ n Q m)
⟸ p R p′ 
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Counting simulation [M. 2020]

● Today’s topic: a coinductive technique for quantitative equational 

reasoning on effectful programs 

● Goal: extend counting simulation to a wider class of effects 
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Overview
● Goal: extend counting simulation to a wider class of effects 

● Challenge 1: 

● Solution 1: 

● Challenge 2: 

● Solution 2: 

● Contribution: 
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Challenge 1: varying observation

● ✅ exception 

 

● ❌ nondeterminism 

 

● ❌ I/O 

p ⪯Q p′ 
Δ

⟺ (p ⇓n ⟹ p′ ⇓m ∧ n Q m)

p ⪯Q p′ 
Δ

⟺ (p ⇓n v ⟹ p′ ⇓m v ∧ n Q m)

p ⪯Q p′ 
Δ

⟺ (p ⇓n (v, tr) ⟹ p′ ⇓m (v, tr) ∧ n Q m)

10

result, and trace of I/O values

termination only

result
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Challenge 1: varying observation
● internal vs. external choice 

● nondeterminism: internal, unobservable choice 

 

● input: external, observable choice 

𝚘𝚛(1,1) ⇓ 1 ⟹ 1 ⇓ 1 ∧ 1 = 1

𝚒𝚗(1,1) ⇓ (1,𝚒𝚗i) ⟹ 1 ⇓ (1,ε) ∧ 1 = 1

11

coincidence of results

coincidence of results, but 
no coincidence of I/O traces
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Solution 1: “observation preorder” on traces

● program trace  

where  

 

 

● examples: 

●  

●  

●  

●

tr ∈ Σ*
Σ = {τ} ∪ ℕ ∪ Ω

Tr(𝚘𝚛(1,2)) = {𝚘𝚛01,𝚘𝚛12}

Tr(𝚒𝚗(1,2)) = {𝚒𝚗01,𝚒𝚗12}

Tr(1) = {1}

Tr(1 + 1) = {τ2}

12

pure 
computation

execution 
result

effect traces 
(e.g. )𝚘𝚛1𝚒𝚗0
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Solution 1: “observation preorder” on traces

● program trace  

where  

 

 

 

● in general:   

 

 

 

tr ∈ Σ*
Σ = {τ} ∪ ℕ ∪ Ω

p0
l0 p1

l1 ⋯ lk n n ✓
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pure 
computation

execution 
result

effect traces 
(e.g. )𝚘𝚛1𝚒𝚗0
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Solution 1: “observation preorder” on traces

● program trace  

where  

 

 

 

● introducing “observation preorder”  

 

 

 

tr ∈ Σ*
Σ = {τ} ∪ ℕ ∪ Ω

𝒬 ⊆ Σ* × Σ*
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pure 
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execution 
result
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Solution 1: “observation preorder” on traces

● program trace  

where  

 

 

 

● introducing “observation preorder”  

● e.g. lifted length preorder: 

　　given ,　  

 

tr ∈ Σ*
Σ = {τ} ∪ ℕ ∪ Ω

𝒬 ⊆ Σ* × Σ*

Q ⊆ ℕ × ℕ t ·Q u
Δ

⟺ | t |Q |u |
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pure 
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effect traces 
(e.g. )𝚘𝚛1𝚒𝚗0
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Solution 1: “observation preorder” on traces
● program trace  

where  

 

 

 

● introducing “observation preorder”  

● e.g. “filtered equality” 

　　given ,    

●

tr ∈ Σ*
Σ = {τ} ∪ ℕ ∪ Ω

𝒬 ⊆ Σ* × Σ*

Σ′ ⊆ Σ t =(remΣ′ ) u
Δ

⟺ t and u are the same except for Σ′ 

τabτcττ =(rem{τ}) abc

16

pure 
computation

execution 
result

effect traces 
(e.g. )𝚘𝚛1𝚒𝚗0
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where  
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(1, Q)-similarity
.1,Q

≠æ (2, Q)-similarity
.2,Q

≠æ · · · ≠æ Q-similarity
.Q

Ωæ Q-trace inclusion
ıQ

Figure 1 The generative spectrum, parameterised by the observation preorder Q

observation preorder Q (1, Q)-simulation Q-trace inclusion ıQ

= standard simulation finite trace inclusion
=rem{·} weak simulation weak trace inclusion

Q̇
(new instances)

refinement ∞Q
err for exception

Q̇ fl =rem{·}fi�nd
refinement ∞Q

nd for nondeterminism
Q̇ fl =rem{·} refinement ∞Q

io for I/O
Table 1 Instances of the two ends of the generative spectrum (see Sec. 5 for details)

which are capable of quantitative comparison. Our goal here is to enhance the techniques (2)44

so that they can accommodate a wider range of e�ects including nondeterminism.45

One of the challenges of accommodating various e�ects is that a notion of observational46

equivalence, in particular that of observation, varies between e�ects. For example, non-47

deterministic choice is regarded as internal and unobservable. A program or(1, 1) with a48

binary nondeterministic choice operator or would be identified with a program 1. The choice49

(with the same result) is ignored. On the other hand, the choice that is made according to a50

1-bit input is regarded as external and observable. A program in(1, 1), which results in 151

regardless of the value of the 1-bit input, would not be identified with the program 1. The52

received input value (0 or 1) and the induced choice (between 1 and 1) is observed. We need53

to be able to both ignore and observe e�ectful choices.54

We propose a notion of preorder-constrained simulation that are applicable to e�ects such55

as nondeterminism and I/O, in addition to the “deterministic” e�ects such as exception. It56

is notably parameterised by an observation preorder, a preorder on traces (or words). By57

altering the observation preorder, we can characterise quantitative notions of observational58

refinement, which is the asymmetric version of observational equivalence, for both internal59

and ignored e�ects, and external and observed e�ects.60

Additionally, preorder-constrained simulations form a generative spectrum, thanks to61

their extra parameter called look-ahead bound. The look-ahead bound is merely a positive62

number, and it solely governs the generative spectrum, determining the degree of awareness63

of branching. The spectrum, illustrated in Fig. 1, refines a part of the so-called linear-time –64

branching time spectrum (LT–BT spectrum) [34]. The “LT” end of the generative spectrum is65

a novel generalisation of trace inclusion (i.e. Q-trace inclusion ıQ) that is also parameterised66

by the observation preorder Q. The spectrum is generative in the sense that it yields various67

concrete spectrums by instantiating the observation preorder. Some instances are shown in68

Tab. 1, whose details will be evident in Sec. 5.69

Our contributions can be summarised as follows.70

(Sec. 4) The notion of preorder-constrained simulation, which is a new variant of simulation71

for characterising observational refinement between programs (Thm. 10 & 11).72

(Sec. 5) A novel generative spectrum (Fig. 1) formed by preorder-consrained simulations,73

governed by the look-ahead bound. One end of the spectrum is given by a novel74

generalisation of trace inclusion that is parameterised by the observation preorder.75

(Sec. 6) A game-theoretic characterisation of preorder-constrained simulation, with76

complexity analysis. The games also form a generative spectrum (Fig. 10).77

(Sec. 7) Integration of the so-called up-to techniques [30], in terms of observation preorders.78
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Examples

● exhibit quantitative refinement ⪯≤
𝖾𝗋𝗋 , ⪯=

𝗇𝖽 , ⪯=
𝗂𝗈
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Overview
● Goal: extend counting simulation to a wider class of effects 

● Starting point: ✅ exception  ❌ nondeterminism  ❌ I/O 

● Challenge 1: varying observation 

● Solution 1: “observation preorder” on traces 

● Challenge 2: 

● Solution 2: 

● Contribution: 
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Challenge 2: branching effects

● ✅ exception 

● ❌ nondeterminism 

● ❌ I/O 

● unsoundness of counting simulation for branching effects 

● due to incomplete inspection of branches

21

cf. definition of counting simulation
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xÕÕ
”œ F1). A term err() œ T�err is an example of such a state in A�err . Lastly, C-Step (2) is175

the key condition of Def. 4. It asserts that any transition x
a xÕ followed by some transitions176

xÕ w  xÕÕ in A1 can be simulated by some transitions y
wÕ

  yÕ in A2.177

Thanks to C-Step, which compares not just single steps but numbers of steps, counting178

simulation can witness refinement for exception succinctly. In Ex. 6 below, the relation Rdistr179

represents the distributive law, without relating any intermediate states.180

I Proposition 5 (correctness wrt. refinement). If R is a Q-counting simulation from A�err to181

A�err , then tRu =∆ t ∞
Q
err u holds for any t, u œ T�err . J182

I Example 6. For the pair of branching-free NAs in Fig. 3a, a relation Rdistr = {(2 ◊ (3 +183

4), 2 ◊ 3 + 2 ◊ 4), (X,X)} is a Æ-counting simulation. The length preorder Æ asserts that184

2 ◊ (3 + 4) has better e�ciency. The only stuck states in the NAs are accepting states, so185

C-Step (1) does not apply. Instead, C-Step (2) applies to the pair (2 ◊ (3 + 4), 2 ◊ 3 + 2 ◊ 4).186

Although counting simulation can witness refinement for exception, that is not the case187

for branching e�ects such as nondeterminism and I/O. This is due to two challenges.188

The first challenge is varying observation. While we ignore e�ect traces for nondeterminism,189

we observe e�ect traces for I/O. However, counting simulation can neither ignore nor observe190

e�ect traces correctly. It simply compares the lengths of traces using the length preorder Q.191

The second challenge is branching. Counting simulation is only correct for branching-free192

e�ects such as exception; it becomes unsound for branching e�ects, e.g. I/O.193

I Example 7 (unsoundness for I/O). For the pair of NAs in Fig. 5, refinement does not194

hold, i.e. 1 + 2 + in(0, 0 + 1) ”∞io in(1 + 2 + 0, 5), because right branches have traces195

·in1··4 ”=rem· in15. However, a relation {(1 + 2 + in(0, 0 + 1), in(1 + 2 + 0, 5)), (X,X)}196

is an =-counting simulation. It only asserts that left branches have “identical” traces (i.e.197

·in0·3 and in0··3), and it does not inspect the right branches with distinct traces.198

This unsoundness is because counting simulation does not necessarily inspect all possibilities of199

branching. Technically, this is due to the existential quantification on xÕ w  xÕÕ in C-Step (2).200
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the key condition of Def. 4. It asserts that any transition x
a xÕ followed by some transitions176

xÕ w  xÕÕ in A1 can be simulated by some transitions y
wÕ

  yÕ in A2.177

Thanks to C-Step, which compares not just single steps but numbers of steps, counting178
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I Example 6. For the pair of branching-free NAs in Fig. 3a, a relation Rdistr = {(2 ◊ (3 +183
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for branching e�ects such as nondeterminism and I/O. This is due to two challenges.188

The first challenge is varying observation. While we ignore e�ect traces for nondeterminism,189

we observe e�ect traces for I/O. However, counting simulation can neither ignore nor observe190

e�ect traces correctly. It simply compares the lengths of traces using the length preorder Q.191

The second challenge is branching. Counting simulation is only correct for branching-free192

e�ects such as exception; it becomes unsound for branching e�ects, e.g. I/O.193

I Example 7 (unsoundness for I/O). For the pair of NAs in Fig. 5, refinement does not194

hold, i.e. 1 + 2 + in(0, 0 + 1) ”∞io in(1 + 2 + 0, 5), because right branches have traces195

·in1··4 ”=rem· in15. However, a relation {(1 + 2 + in(0, 0 + 1), in(1 + 2 + 0, 5)), (X,X)}196

is an =-counting simulation. It only asserts that left branches have “identical” traces (i.e.197

·in0·3 and in0··3), and it does not inspect the right branches with distinct traces.198

This unsoundness is because counting simulation does not necessarily inspect all possibilities of199
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Solution 2: limited ∃
● from unlimited  to limited  

● enabling full inspection of branches

∃ ∃
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Figure 6 Conditions of Def. 9. Black parts are universally quantified, and magenta parts are
existentially quantified.

When an (M, Q)-simulation (resp. Q-simulation) relates x and y, we say x is (M, Q)-242

similar (resp. Q-similar) to y and write x .M,Q y (resp. x .Q y). When R is an243

(M, Q)-simulation or a Q-simulation from A to A, we say it is on A.244

Fig. 6 illustrates the conditions of Def. 9. The condition Final1 is an instance of FinalM .245

The condition StepŒ has two possibilities (i) and (ii), due to the clauses (3-i) and (3-ii).246

The reason for having these clauses, in particular the extra one (3-ii), will be evident in247

Sec. 5. The di�erence between Fig. 4c and Fig. 6b (or Fig. 6d) is crucial to overcome248

the incomplete inspection of branching that counting simulation su�ers from. In Fig. 6b,249

existential quantification is limited to xk, which is an intermediate state of the sequence250

x  xM that is universally quantified.251

Thanks to the observation preorder Q and the limited existential quantification, preorder-252

constrained simulation can characterise notions of quantitative refinement ∞
Q for all the253

signatures � in Ex. 1. Namely, (M, Q)-simulations provide a su�cient condition for refine-254

ment, and Q-simulations fully characterises refinement.255

I Theorem 10 (correctness of (M, Q)-simulations wrt. refinement). Let M œ N+.256

1. For any t, u œ T�err , t .M,Q̇ u =∆ t ∞
Q
err u.257

2. For any t, u œ T�nd , t .M,Q̇fl=rem
{·}fi�nd

u =∆ t ∞
Q
nd u.258

3. For any t, u œ T�io , t .M,Q̇fl=rem{·}
u =∆ t ∞

Q
io u. J259

I Theorem 11 (correctness of Q-simulations wrt. refinement).260

1. For any t, u œ T�err , t .Q̇ u ≈∆ t ∞
Q
err u.261

2. For any t, u œ T�nd , t .Q̇fl=rem
{·}fi�nd

u ≈∆ t ∞
Q
nd u.262

3. For any t, u œ T�io , t .Q̇fl=rem{·}
u ≈∆ t ∞

Q
io u. J263

I Example 12. Recall the pair of NAs in Fig. 3c. Let t1 © 1 + 2 + in(0, 1) and t2 ©264

in(1 + 2 + 0, 1 + 2 + 1). The filtered equality =rem{·} distinguishes traces of length 1 from265

t1, t2, namely: · ”=rem{·} ini (i œ [1]). This leads to non-existence of any (1, =̇fl =rem{·})-266

simulation that includes the pair (t1, t2). In contrast, the filtered equality can identify traces267

of length 2 from t1, t2, namely: ·ini =rem{·} ini· (i œ [1]). This leads to existence of a268

(2, =̇fl =rem{·})-simulation. It can be given by {(t1, t2), (3 + 0, 3 + 0), (3 + 1, 3 + 1), (X,X)}.269

Whereas Q-counting simulation (for Q ™ N ◊ N) is defined for NAs (see Def. 4), the270

definition is tailored to branching-free NAs whose all accepting states are stuck states.271

The NA A�err is an example. For these automata, preorder-constraind simulation indeed272

generalises counting simulation. However, the opposite does not hold.273
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Overview
● Goal: extend counting simulation to a wider class of effects 

● Starting point: ✅ exception  ❌ nondeterminism  ❌ I/O 

● Challenge 1: varying observation 

● Solution 1: “observation preorder” on traces 

● Challenge 2: branching effects 

● Solution 2: limited  

● Contribution: 

∃
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Contribution: -simulation(M, 𝒬)
● parameterised by 

● “look-ahead bound”  

● observation preorder 

M ∈ ℕ+

𝒬 ∈ Σ* × Σ*
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Examples of -simulations(M, 𝒬)
● -simulation for (a) 

● -simulation for (b) 

● -simulation for (c)

(2, ·≤)

(1, ·= ∪ =rem{τ}∪Ω
)

(2, ·= ∪ =rem{τ}
)
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Overview
● Goal: extend counting simulation to a wider class of effects 

● Starting point: ✅  exception  ❌  nondeterminism  ❌  I/O 

● Challenge 1: varying observation 

● Solution 1: “observation preorder” on traces 

● Challenge 2: branching effects 

● Solution 2: limited  

● Contribution: -simulation 

● Result: ✅  exception  ✅  nondeterminism  ✅  I/O

∃

(M, 𝒬)
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Overview
● Goal: extend counting simulation to a wider class of effects 

● Starting point: ✅  exception  ❌  nondeterminism  ❌  I/O 

● Challenge 1: varying observation 

● Solution 1: “observation preorder” on traces 

● Challenge 2: branching effects 

● Solution 2: limited  

● Contribution: a generative spectrum of -simulations 

● Result: ✅  exception  ✅  nondeterminism  ✅  I/O

∃

(M, 𝒬)
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A generative spectrum of -simulations(M, 𝒬)
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Overview
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● Challenge 2: branching effects 
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Future work 1: bunching branches

● ❌ probabilistic choice 

● a naive attempt yields a false refinement: 

 

● Idea: from nondeterministic automata to weighted 

automata?

𝚘𝚛0.5(1,1) ⊑≤+
𝚘𝚛0.5(0,1)
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Future work 2: efficient solving

●  for nondeterministic automata  

　　　　　　   that represent whole execution of  

　　　　   reachability in a graph “pairing”  with  

● polynomial time solving, based on whole execution 😐  

● Idea: solving without executing programs 

● using TRS techniques? [M. & Hamana, FLOPS ’24] 

 

 

p
?

⪯Q p′ ⟸ p ≲M,𝒬 p′ 𝒜(p), 𝒜(p′ )

p, p′ 

⟸ 𝒜(p) 𝒜(p′ )
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Overview
● Goal: extend counting simulation to a wider class of effects 

● Starting point: ✅  exception  ❌  nondeterminism  ❌  I/O 

● Challenge 1: varying observation 

● Solution 1: “observation preorder” on traces 

● Challenge 2: branching effects 

● Solution 2: limited  

● Contribution: a generative spectrum of -simulations 

● Result: ✅  exception  ✅  nondeterminism  ✅  I/O 

● (with a game-theoretic characterisation) 

● (with the up-to technique)

∃

(M, 𝒬)
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