Preorder-Constrained Simulations for Program Refinement with Effects

Koko Muroya
(RIMS, Kyoto University)

Takahiro Sanada
(RIMS, Kyoto University)

Natsuki Urabe (NII)

Today's topic

- a coinductive technique for
quantitative equational reasoning on effectful programs

Quantitative equational reasoning

- " p behaves the same as p^{\prime}
and p^{\prime} terminates with a less number of steps"
- $p \Downarrow^{n} \Longrightarrow p^{\prime} \Downarrow^{m} \wedge n \geq m$
- (basic) quantitative notion of observational refinement

Quantitative equational reasoning

- " p behaves the same as p^{\prime}
and p^{\prime} terminates with a certain number of steps"
- $\left(p \Downarrow^{n} \Longrightarrow p^{\prime} \Downarrow^{m} \wedge n Q m\right) \stackrel{\Delta}{\Longleftrightarrow} p \preceq^{Q} p^{\prime}$ given a "length preorder" $Q \subseteq \mathbb{N} \times \mathbb{N}$
- (basic) quantitative notion of observational refinement

A coinductive approach

- stepwise reasoning on execution traces, using nondeterministic automata
- e.g. standard simulation
- (FYI: simulation is the asymmetric version of bisimulation)
- $p \preceq^{=} p^{\prime} \stackrel{\Delta}{\Longleftrightarrow}\left(p \Downarrow^{n} \Longrightarrow p^{\prime} \Downarrow^{m} \wedge n=m\right)$
$\Longleftarrow p R p^{\prime}$ such that

$$
\text { (ac) } \underline{-r}_{- \text {(2) }}
$$

(a) Final

(b) Step

Counting simulation [M. 2020]

- stepwise reasoning on execution traces, using nondeterministic automata
- parameterised by a length preorder $Q \subseteq \mathbb{N} \times \mathbb{N}$
- (FYI: simulation is the asymmetric version of bisimulation)
- $p \leq^{Q} p^{\prime} \stackrel{\Delta}{\Longleftrightarrow}\left(p \Downarrow^{n} \Longrightarrow p^{\prime} \Downarrow^{m} \wedge n Q m\right)$
$\Longleftarrow p R p^{\prime}$ such that

$$
\text { (®) }-\frac{R}{-} \text { (y) }
$$

(a) C-Final

(c) C-Step (2) where $|a w| Q\left|w^{\prime}\right|$

Counting simulation [M. 2020]

- stepwise reasoning on execution traces, using nondeterministic automata
- $p \preceq^{Q} p^{\prime} \stackrel{\Delta}{\Longleftrightarrow}\left(p \Downarrow^{n} \Longrightarrow p^{\prime} \Downarrow^{m} \wedge n Q m\right)$
$\Longleftarrow p R p^{\prime}$ such that

$$
\text { (ac) } \underline{R}^{R} \text { (2) }
$$

(a) C-Final

(c) C-Step (2) where $|a w| Q\left|w^{\prime}\right|$

- soundness only for "deterministic" programs
- or "branching-free" automata

Counting simulation [M. 2020]

- Today's topic: a coinductive technique for quantitative equational reasoning on effectful programs
- Goal: extend counting simulation to a wider class of effects

Fig. 3: Example pairs of NAs

Overview

- Goal: extend counting simulation to a wider class of effects
- Challenge 1 :
- Solution 1 :
- Challenge 2 :
- Solution 2 :
- Contribution:

Challenge 1: varying observation

- ∇ exception

$$
p \leq^{Q} p^{\prime} \stackrel{\Delta}{\Longleftrightarrow}\left(p \Downarrow^{n} \Longrightarrow p^{\prime} \Downarrow^{m} \wedge n Q m\right)
$$

- \mathbf{X} nondeterminism

result

$p \leq p^{\prime} \Longleftrightarrow\left(p \Downarrow^{n} v \Longrightarrow p^{\prime} \Downarrow^{m} v \wedge n Q m\right)$

- X I / O
$p \preceq^{Q} p^{\prime} \stackrel{\Delta}{\Longleftrightarrow}\left(p \Downarrow^{n}(v, t r) \Longrightarrow p^{\prime} \Downarrow^{m}(v, t r) \wedge n Q m\right)$

Challenge 1: varying observation

- internal vs. external choice
- nondeterminism: internal, unobservable choice

$$
\stackrel{\operatorname{or}(1,1)}{\Downarrow 1 \Longrightarrow \underline{1} \Downarrow 1 \wedge 1 \underbrace{=1}_{\text {coincidence of results }}}
$$

- input: external, observable choice

$$
\underline{\operatorname{in}(1,1)} \Downarrow\left(1, \mathrm{in}_{i}\right) \Longrightarrow \underline{1} \Downarrow(1, \varepsilon) \wedge 1=1
$$

coincidence of results, but no coincidence of I/O traces

Solution 1: "observation preorder" on traces

- program trace $\operatorname{tr} \in \Sigma^{*}$

- examples:
- $\operatorname{Tr}(\operatorname{or}(1,2))=\left\{\right.$ or $_{0} 1$, or $\left._{1} 2\right\}$
- $\operatorname{Tr}(\mathrm{in}(1,2))=\left\{\mathrm{in}_{0} 1, \mathrm{in}_{1} 2\right\}$
- $\operatorname{Tr}(1)=\{1\}$
- $\operatorname{Tr}(1+1)=\{\tau 2\}$

Solution 1: "observation preorder" on traces

- program trace tr $\in \Sigma^{*}$

- in general: $p_{0} \xrightarrow{l_{0}} p_{1} \xrightarrow{l_{1}} \cdots \xrightarrow{l_{k}} \xrightarrow{n} \boldsymbol{\checkmark}$

Solution 1: "observation preorder" on traces

- program trace $\operatorname{tr} \in \Sigma^{*}$

- introducing "observation preorder" $\mathbb{Q} \subseteq \Sigma^{*} \times \Sigma^{*}$

Solution 1: "observation preorder" on traces

- program trace $\operatorname{tr} \in \Sigma^{*}$

where $\Sigma=\{\tau\} \cup \mathbb{N} \cup \bar{\Omega}$

- introducing "observation preorder" $\mathbb{Q} \subseteq \Sigma^{*} \times \Sigma^{*}$
- e.g. lifted length preorder:

$$
\text { given } Q \subseteq \mathbb{N} \times \mathbb{N}, \quad t \dot{Q} u \stackrel{\Delta}{\Longleftrightarrow}|t| Q|u|
$$

Solution 1: "observation preorder" on traces

- program trace $\operatorname{tr} \in \Sigma^{*}$
where $\Sigma=\{\tau\} \cup \mathbb{N} \cup \bar{\Omega}$

- introducing "observation preorder" $\mathbb{Q} \subseteq \Sigma^{*} \times \Sigma^{*}$
- e.g. "filtered equality"
given $\Sigma^{\prime} \subseteq \Sigma, \quad t={ }_{\left(\operatorname{rem}_{\Sigma^{\prime}}\right)} u \stackrel{\Delta}{\Longleftrightarrow} t$ and u are the same except for Σ^{\prime}
- $\tau a b \tau c \tau \tau=\left(\mathrm{rem}_{\{\tau\}} a b c\right.$

Solution 1: "observation preorder" on traces

- program trace $\operatorname{tr} \in \Sigma^{*}$

- introducing "observation preorder" $\mathbb{Q} \subseteq \Sigma^{*} \times \Sigma^{*}$

Definition 1 ((quantitative) refinement). Let Q be a preorder on \mathbb{N} (dubbed length preorder).

1. For $\Omega_{\mathrm{err}}, t \preceq \preceq_{\mathrm{err}}^{Q} u$ is defined by $\forall w .\left(t \xrightarrow{w} \checkmark \Longrightarrow \exists w^{\prime} \cdot u \xrightarrow{w^{\prime}} \checkmark \wedge|w| Q\left|w^{\prime}\right|\right)$.
2. For $\Omega_{\mathrm{nd}}, t \preceq_{\mathrm{nd}}^{Q} u$ is defined by $\forall w .\left(t \xrightarrow{w} \checkmark \Longrightarrow \exists w^{\prime} \cdot u \xrightarrow{w^{\prime}} \checkmark \wedge|w| Q\left|w^{\prime}\right| \wedge\right.$ $\left.w=\operatorname{rem}_{\{\tau\} \cup \overline{\Omega_{\mathrm{nd}}}} w^{\prime}\right)$.
3. For $\Omega_{\mathrm{io}}, t \preceq_{\mathrm{io}}^{Q} u$ is defined by $\forall w \cdot\left(t \xrightarrow{w} \checkmark \Longrightarrow \exists w^{\prime} \cdot u \xrightarrow{w^{\prime}} \checkmark \wedge|w| Q\left|w^{\prime}\right| \wedge\right.$ $\left.w=\operatorname{rem}_{\{\tau\}} w^{\prime}\right)$.

Solution 1: "observation preorder" on traces

- program trace $\operatorname{tr} \in \Sigma^{*}$

- introducing "observation preorder" $\mathbb{Q} \subseteq \Sigma^{*} \times \Sigma^{*}$

\dot{Q}	refinement $\preceq_{\text {err }}^{Q}$ for exception
$\dot{Q} \cap=\operatorname{rem}_{\{\tau\} \cup \overline{\Omega_{n d}}}$	refinement $\preceq_{\text {nd }}^{Q}$ for nondeterminism
$\dot{Q} \cap==_{\text {rem }}^{\{\tau\}}$	refinement $\preceq_{\mathrm{io}}^{Q}$ for I/O

Examples

- exhibit quantitative refinement $\leq_{\text {err }}^{\leq}, \leq_{\text {nd }}^{ \pm}, \leq_{\text {io }}^{\star}$

Fig. 3: Example pairs of NAs

Overview

- Goal: extend counting simulation to a wider class of effects
- Starting point: \mathbf{V} exception \mathbf{X} nondeterminism $\mathbf{X I / O}$
- Challenge 1 : varying observation
- Solution 1: "observation preorder" on traces
- Challenge 2:
- Solution 2:
- Contribution:

Challenge 2: branching effects

- ∇ exception
- \mathbf{X} nondeterminism
- X I/O
- unsoundness of counting simulation for branching effects
- due to incomplete inspection of branches

Solution 2: limited \exists

- from unlimited \exists to limited \exists

- enabling full inspection of branches

Overview

- Goal: extend counting simulation to a wider class of effects
- Starting point: $\mathbf{\nabla}$ exception \mathbf{X} nondeterminism \mathbf{X} I/O
- Challenge 1: varying observation
- Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
- Solution 2: limited \exists
- Contribution:

Contribution: (M, Q)-simulation

- parameterised by
- "look-ahead bound" $M \in \mathbb{N}_{+}$
- observation preorder $\mathbb{Q} \in \Sigma^{*} \times \Sigma^{*}$

Definition 3 (($M, \mathbf{Q})$-simulations). For each $M \in \mathbb{N}_{+}$, a binary relation $R \subseteq$ $X_{1} \times X_{2}$ is an M-bounded \mathbf{Q}-constrained simulation ((M, \mathbf{Q})-simulation in short) from \mathcal{A}_{1} to \mathcal{A}_{2} if, for any $(x, y) \in R$, the following Final ${ }^{M}$ and Step ${ }^{M}$ hold.
Final ${ }^{M}$ For each $w=a_{1} \ldots a_{n} \in \Sigma^{*}$ and $x_{1} \ldots x_{n} \in X_{1}^{*}$ such that $n<M$, $x \stackrel{a_{1}}{\sim} x_{1} x_{1} \cdots \stackrel{a_{n}}{\sim} x_{1} x_{n}$ and $x_{n} \in F_{1}$, there exist $w^{\prime} \in \Sigma^{*}$ and $y^{\prime} \in X_{2}$ such that $w \mathbf{Q} w^{\prime}, y \stackrel{w^{\prime}}{\rightsquigarrow_{2}} y^{\prime}$ and $y^{\prime} \in F_{2}$.
 x_{M}, there exist $k \in\{1, \ldots, M\}, w^{\prime} \in \Sigma^{*}$ and $y^{\prime} \in X_{2}$ such that $a_{1} \cdots a_{k} \mathbf{Q} w^{\prime}$, $y \stackrel{w^{\prime}}{w_{2}} y^{\prime}$ and $x_{k} R y^{\prime}$.

Contribution: (M, \mathbb{Q})-simulation

- parameterised by
- "look-ahead bound" $M \in \mathbb{N}_{+}$
- observation preorder $\mathbb{Q} \in \Sigma^{*} \times \Sigma^{*}$

Definition 3 (($M, \mathbf{Q})$-simulations). For each $M \in \mathbb{N}_{+}$, a binary relation $R \subseteq$ $X_{1} \times X_{2}$ is an M-bounded \mathbf{Q}-constrained simulation (M, \mathbf{Q})-simulation in short) from \mathcal{A}_{1} to \mathcal{A}_{2} if, for any $(x, y) \in R$, the following Final ${ }^{M}$ and Step ${ }^{M}$ hold.

(a) Final ${ }^{M}$ where $|w|<M \wedge w \mathbf{Q} w^{\prime}$
(b) Step ${ }^{M}$ where $a_{1} \cdots a_{k} \mathbf{Q} w^{\prime}$

Contribution: (M, \mathbb{Q})-simulation

- parameterised by
- "look-ahead bound" $M \in \mathbb{N}_{+}$
- observation preorder $\mathbb{Q} \in \Sigma^{*} \times \Sigma^{*}$

Corollary 1 (correctness of (M, \mathbf{Q})-simulations wrt. refinement).

1. For any $M \in \mathbb{N}_{+}$and $t, u \in \mathbf{T}_{\Omega_{\mathrm{err}}}, t \lesssim_{M, \dot{Q}} u \Longrightarrow t \preceq_{\mathrm{err}}^{Q} u$.
2. For any $M \in \mathbb{N}_{+}$and $t, u \in \mathbf{T}_{\Omega_{\mathrm{nd}}}, t \lesssim_{M, \dot{Q} \cap=\text { rem }_{\{\tau\}} \cup \overline{\Omega_{\mathrm{nd}}}} u \Longrightarrow t \preceq_{\text {nd }}^{Q} u$.
3. For any $M \in \mathbb{N}_{+}$and $t, u \in \mathbf{T}_{\Omega_{\mathrm{i}}}, t \lesssim_{M, \dot{Q} \cap={ }_{\text {rem }}^{\{\tau\}}} u \Longrightarrow t \preceq_{\mathrm{io}}^{Q} u$.

Examples of (M, \mathbb{Q})-simulations

- $(2, \dot{\leq})$-simulation for (a)
- $\left(1, \doteq \cup==_{\operatorname{rem}_{\{\tau\} \cup \bar{\Omega}}}\right)$-simulation for (b)
- $\left(2, \doteq \cup=_{\text {rem }_{\{t]}}\right)$-simulation for (c)

$\begin{array}{ll}\text { (a) } \mathcal{A}_{\Omega_{\mathrm{er}}}(\underline{2} \times(\underline{3}+\underline{4})) \text { and } \mathcal{A}_{\Omega_{\mathrm{err}}}(\underline{2} \times & \text { (b) } \underset{\mathcal{A}_{\Omega_{\mathrm{nd}}}(\operatorname{or}(\underline{1}, \underline{0}))}{\mathcal{A}_{\mathrm{n}_{\mathrm{nd}}}(\operatorname{or}(\underline{1}, \underline{1}))} \\ \underline{3}+\underline{2} \times \underline{4}) & \text { and }\end{array}$

(c) $\mathcal{A}_{\Omega_{\mathrm{io}}}(\underline{1}+\underline{2}+\operatorname{in}(\underline{0}, \underline{1}))$ and $\mathcal{A}_{\Omega_{\mathrm{io}}}(\operatorname{in}(\underline{1}+\underline{2}+\underline{0}, \underline{1}+\underline{2}+\underline{1}))$

Fig. 3: Example pairs of NAs

Overview

- Goal: extend counting simulation to a wider class of effects
- Starting point: $\boldsymbol{\nabla}$ exception \mathbf{X} nondeterminism $\mathbf{X I / O}$
- Challenge 1: varying observation
- Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
- Solution 2: limited \exists
- Contribution: (M, Q)-simulation
- Result: $\sqrt{ }$ exception ∇ nondeterminism ∇ I/O

Overview

- Goal: extend counting simulation to a wider class of effects
- Starting point: $\mathbf{\nabla}$ exception \mathbf{X} nondeterminism $\mathbf{X I / O}$
- Challenge 1: varying observation
- Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
- Solution 2: limited \exists
- Contribution: a generative spectrum of (M, Q)-simulations
- Result: $\sqrt{ }$ exception $\sqrt{ }$ nondeterminism $\sqrt{ }$ I/O

A generative spectrum of (M, \mathbb{Q})-simulations

Fig. 1: A generative spectrum, parameterised by the observation preorder \mathbf{Q}

observation preorder Q	(1, \mathbf{Q})-simulation	Q-trace inclusion $\sqsubseteq_{\text {Q }}$
$=$	standard simulation	finite trace inclusion
$=\operatorname{rem}_{\{\tau\}}$	weak simulation	weak trace inclusion
\dot{Q}		refinement $\preceq_{\text {err }}^{Q}$ for exception
$\dot{Q} \cap=\operatorname{rem}_{\{\tau\} \cup \overline{\Omega_{\mathrm{nd}}}}$	(new instances)	refinement $\preceq_{\text {nd }}^{Q}$ for nondeterminism
$\dot{Q} \cap=\operatorname{rem}_{\{\tau\}}$		refinement $\preceq_{i o}^{Q}$ for I/O

Table 1: Instances of the two ends of the generative spectrum (see Sec. 4 for details)

Overview

- Goal: extend counting simulation to a wider class of effects
- Starting point: $\mathbf{\nabla}$ exception \mathbf{X} nondeterminism $\mathbf{X I / O}$
- Challenge 1: varying observation
- Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
- Solution 2: limited \exists
- Contribution: a generative spectrum of (M, Q)-simulations
- Result: $\sqrt{ }$ exception $\sqrt{ }$ nondeterminism $\sqrt{ }$ I/O

Future work 1: bunching branches

- X probabilistic choice
- a naive attempt yields a false refinement:

$$
\operatorname{or}_{0.5}(1,1) \sqsubseteq_{\leq_{+}} \operatorname{or}_{0.5}(0,1)
$$

- Idea: from nondeterministic automata to weighted automata?

Future work 2: efficient solving

- $p \stackrel{?}{\leq^{Q}} p^{\prime} \Longleftarrow p \lesssim_{M, Q} p^{\prime}$ for nondeterministic automata $\mathscr{A}(p), \mathscr{A}\left(p^{\prime}\right)$ that represent whole execution of p, p^{\prime}
\Longleftarrow reachability in a graph "pairing" $\mathscr{A}(p)$ with $\mathscr{A}\left(p^{\prime}\right)$
- polynomial time solving, based on whole execution :)
- Idea: solving without executing programs
- using TRS techniques? [M. \& Hamana, FLOPS '24]

Overview

- Goal: extend counting simulation to a wider class of effects
- Starting point: $\sqrt{ }$ exception \mathbf{X} nondeterminism $\mathbf{X I} \mathrm{O}$
- Challenge 1: varying observation
- Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
- Solution 2: limited \exists
- Contribution: a generative spectrum of (M, Q)-simulations
- Result: ∇ exception ∇ nondeterminism ∇ I/O
- (with a game-theoretic characterisation)
- (with the up-to technique)

