Preorder-Constrained Simulations for Program Refinement with Effects

<u>Koko Muroya</u> (RIMS, Kyoto University)

Takahiro Sanada (RIMS, Kyoto University)

Natsuki Urabe (NII)

Today's topic

• a coinductive technique for

quantitative equational reasoning on effectful programs

Quantitative equational reasoning

• "p behaves the same as p'

and p' terminates with a less number of steps"

•
$$p \Downarrow^n \implies p' \Downarrow^m \land n \ge m$$

• (basic) quantitative notion of observational refinement

Quantitative equational reasoning

• "p behaves the same as p'

and p' terminates with a certain number of steps"

•
$$(p \Downarrow^n \Longrightarrow p' \Downarrow^m \land n Q m) \stackrel{\Delta}{\iff} p \preceq^Q p'$$

given a "length preorder" $Q \subseteq \mathbb{N} \times \mathbb{N}$

• (basic) quantitative notion of observational refinement

A coinductive approach

- stepwise reasoning on execution traces, using nondeterministic automata
- e.g. standard simulation
 - (FYI: simulation is the asymmetric version of bisimulation)

•
$$p \leq p' \Leftrightarrow (p \Downarrow^n \Longrightarrow p' \Downarrow^m \land n = m)$$

 $\iff p R p'$ such that

$$x - \frac{R}{-y}$$

(b) Step

Counting simulation [M. 2020]

- stepwise reasoning on execution traces, using nondeterministic automata
- parameterised by a length preorder $Q \subseteq \mathbb{N} \times \mathbb{N}$
 - (FYI: simulation is the asymmetric version of bisimulation)

•
$$p \leq^{Q} p' \quad \stackrel{\Delta}{\iff} \quad (p \Downarrow^{n} \implies p' \Downarrow^{m} \land n Q m)$$

 $\iff p R p' \text{ such that}$

 $x - \frac{R}{y}$

(a) C-Final

Counting simulation [M. 2020]

stepwise reasoning on execution traces, using nondeterministic automata

•
$$p \leq^{Q} p' \quad \stackrel{\Delta}{\Leftrightarrow} \quad (p \Downarrow^{n} \Longrightarrow p' \Downarrow^{m} \land n Q m)$$

 $\leftarrow p R p' \text{ such that}$
 $\stackrel{x'}{=} \stackrel{R}{=} \stackrel{y}{y}$
(a) *C-Final*
(c) *C-Step* (2) where $|aw|Q|w'|$

- soundness only for "deterministic" programs
 - or "branching-free" automata

Counting simulation [M. 2020]

- Today's topic: a coinductive technique for quantitative equational reasoning on effectful programs
- Goal: extend counting simulation to a wider class of effects

Fig. 3: Example pairs of NAs

• Goal: extend counting simulation to a wider class of effects

- Challenge 1:
 - Solution 1:
- Challenge 2:
 - Solution 2:
- Contribution:

Challenge 1: varying observation

• exception

$$p \leq^{Q} p' \stackrel{\Delta}{\Leftrightarrow} (p \downarrow^{n} \Rightarrow p' \downarrow^{m} \land n Q m)$$

• \bigstar nondeterminism
 $p \leq^{Q} p' \stackrel{\Delta}{\Leftrightarrow} (p \downarrow^{n} v \Rightarrow p' \downarrow^{m} v \land n Q m)$
• $\bigstar I/O$
 $p \leq^{Q} p' \stackrel{\Delta}{\Leftrightarrow} (p \downarrow^{n} (v, tr) \Rightarrow p' \downarrow^{m} (v, tr) \land n Q m)$

Challenge 1: varying observation

- internal vs. external choice
 - nondeterminism: internal, unobservable choice

$$or(1,1) \Downarrow 1 \implies 1 \Downarrow 1 \land 1 = 1$$

$$coincidence of results$$

• input: external, observable choice

$$\underline{\operatorname{in}(1,1)} \Downarrow (1,\operatorname{in}_i) \Longrightarrow \underline{1} \Downarrow (1,\varepsilon) \land 1 = 1$$

coincidence of results, but no coincidence of I/O traces

• program trace $tr \in \Sigma^*$

- examples:
 - $Tr(or(1,2)) = \{or_01, or_12\}$
 - $Tr(in(1,2)) = \{in_01, in_12\}$
 - $Tr(1) = \{1\}$
 - $\operatorname{Tr}(1+1) = \{\tau 2\}$

• program trace $tr \in \Sigma^*$

• in general: $p_0 \xrightarrow{l_0} p_1 \xrightarrow{l_1} \cdots \xrightarrow{l_k} \underline{n} \xrightarrow{n} \checkmark$

• program trace $tr \in \Sigma^*$

• introducing "observation preorder" $\mathcal{Q} \subseteq \Sigma^* \times \Sigma^*$

• program trace $tr \in \Sigma^*$

- introducing "observation preorder" $\mathcal{Q} \subseteq \Sigma^* \times \Sigma^*$
- e.g. lifted length preorder:

given
$$Q \subseteq \mathbb{N} \times \mathbb{N}$$
, $t \dot{Q} u \iff |t| Q |u|$

• program trace $tr \in \Sigma^*$

- introducing "observation preorder" $\mathcal{Q} \subseteq \Sigma^* \times \Sigma^*$
- e.g. "filtered equality"

given $\Sigma' \subseteq \Sigma$, $t =_{(\operatorname{rem}_{\Sigma'})} u \iff t$ and u are the same except for Σ'

•
$$\tau ab\tau c\tau\tau =_{(\operatorname{rem}_{\{\tau\}})} abc$$

• program trace $tr \in \Sigma^*$

• introducing "observation preorder" $\mathcal{Q} \subseteq \Sigma^* \times \Sigma^*$

Definition 1 ((quantitative) refinement). Let Q be a preorder on \mathbb{N} (dubbed length preorder).

1. For
$$\Omega_{\text{err}}$$
, $t \leq_{\text{err}}^{Q} u$ is defined by $\forall w.(t \xrightarrow{w} \checkmark) \Longrightarrow \exists w'.u \xrightarrow{w'} \checkmark \land |w|Q|w'|).$

- 2. For Ω_{nd} , $t \preceq^Q_{nd} u$ is defined by $\forall w.(t \xrightarrow{w} \checkmark) \implies \exists w'.u \xrightarrow{w} \checkmark \land |w|Q|w'| \land w =_{\operatorname{rem}_{\{\tau\} \cup \overline{\Omega_{nd}}} w').$
- 3. For Ω_{io} , $t \preceq^{Q}_{io} u$ is defined by $\forall w.(t \xrightarrow{w} \checkmark) \implies \exists w'.u \xrightarrow{w'} \checkmark \land |w|Q|w'| \land w =_{\mathsf{rem}_{\{\tau\}}} w').$

• program trace $tr \in \Sigma^*$

• introducing "observation preorder" $\mathcal{Q} \subseteq \Sigma^* \times \Sigma^*$

Examples

• exhibit quantitative refinement $\leq_{err}^{\leq}, \leq_{nd}^{=}, \leq_{io}^{=}$

Fig. 3: Example pairs of NAs

- Goal: extend counting simulation to a wider class of effects
 - Starting point: \mathbf{V} exception \mathbf{X} nondeterminism \mathbf{X} I/O

- Challenge 1: varying observation
 - Solution 1: "observation preorder" on traces
- Challenge 2:
 - Solution 2:
- Contribution:

Challenge 2: branching effects

- exception
- 🗙 nondeterminism

- unsoundness of counting simulation for branching effects
 - due to incomplete inspection of branches

Solution 2: limited \exists

• from unlimited \exists to limited \exists

• enabling full inspection of branches

- Goal: extend counting simulation to a wider class of effects

- Challenge 1: varying observation
 - Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
 - Solution 2: limited \exists
- Contribution:

Contribution: (M, \mathcal{Q}) -simulation

- parameterised by
 - "look-ahead bound" $M \in \mathbb{N}_+$
 - observation preorder $\mathcal{Q} \in \Sigma^* \times \Sigma^*$

Definition 3 ((M, Q)-simulations). For each $M \in \mathbb{N}_+$, a binary relation $R \subseteq X_1 \times X_2$ is an M-bounded Q-constrained simulation ((M, Q)-simulation in short) from \mathcal{A}_1 to \mathcal{A}_2 if, for any $(x, y) \in R$, the following Final^M and Step^M hold.

Final^M For each $w = a_1 \dots a_n \in \Sigma^*$ and $x_1 \dots x_n \in X_1^*$ such that n < M, $x \stackrel{a_1}{\rightsquigarrow} x_1 \dots \stackrel{a_n}{\rightsquigarrow} x_n$ and $x_n \in F_1$, there exist $w' \in \Sigma^*$ and $y' \in X_2$ such that $w \mathbf{Q} w', y \stackrel{w'}{\rightsquigarrow} y' = y'$ and $y' \in F_2$. **Step**^M For each $a_1 \dots a_M \in \Sigma^M$ and $x_1 \dots x_M \in X_1^M$ such that $x \stackrel{a_1}{\rightsquigarrow} x_1 \dots \stackrel{a_M}{\rightsquigarrow} x_M$, there exist $k \in \{1, \dots, M\}, w' \in \Sigma^*$ and $y' \in X_2$ such that $a_1 \dots a_k \mathbf{Q} w', y \stackrel{w'}{\rightsquigarrow} y' \stackrel{w'}{\rightsquigarrow} y' = y'$ and $x_k Ry'$.

Contribution: (M, \mathcal{Q}) -simulation

- parameterised by
 - "look-ahead bound" $M \in \mathbb{N}_+$
 - observation preorder $\mathcal{Q} \in \Sigma^* \times \Sigma^*$

Definition 3 ((M, Q)-simulations). For each $M \in \mathbb{N}_+$, a binary relation $R \subseteq X_1 \times X_2$ is an M-bounded Q-constrained simulation ((M, Q)-simulation in short) from \mathcal{A}_1 to \mathcal{A}_2 if, for any $(x, y) \in R$, the following Final^M and Step^M hold.

Contribution: (M, \mathcal{Q}) -simulation

- parameterised by
 - "look-ahead bound" $M \in \mathbb{N}_+$
 - observation preorder $\mathcal{Q} \in \Sigma^* \times \Sigma^*$

Corollary 1 (correctness of (M, \mathbf{Q}) -simulations wrt. refinement).

1. For any
$$M \in \mathbb{N}_+$$
 and $t, u \in \mathbf{T}_{\Omega_{err}}, t \lesssim_{M,\dot{Q}} u \implies t \preceq^Q_{err} u$.
2. For any $M \in \mathbb{N}_+$ and $t, u \in \mathbf{T}_{\Omega_{nd}}, t \lesssim_{M,\dot{Q}\cap =_{\operatorname{rem}_{\{\tau\}}\cup\overline{\Omega_{nd}}} u \implies t \preceq^Q_{nd} u$.
3. For any $M \in \mathbb{N}_+$ and $t, u \in \mathbf{T}_{\Omega_{io}}, t \lesssim_{M,\dot{Q}\cap =_{\operatorname{rem}_{\{\tau\}}}} u \implies t \preceq^Q_{io} u$.

Examples of (M, \mathcal{Q}) -simulations

• $(2, \leq)$ -simulation for (a)

• $(1, \doteq \cup =_{\operatorname{rem}_{\{\tau\}\cup\overline{\Omega}}})$ -simulation for (b)

Fig. 3: Example pairs of NAs

- Goal: extend counting simulation to a wider class of effects
 - Starting point: 🔽 exception 🗙 nondeterminism 🗙 I/O

- Challenge 1: varying observation
 - Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
 - Solution 2: limited \exists
- Contribution: (M, Q)-simulation
 - Result: 🔽 exception 🔽 nondeterminism 🔽 I/O

- Goal: extend counting simulation to a wider class of effects
 - Starting point: 🔽 exception 🗙 nondeterminism 🗙 I/O

- Challenge 1: varying observation
 - Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
 - Solution 2: limited \exists
- Contribution: a *generative spectrum* of (M, Q)-simulations
 - Result: exception nondeterminism I/O

A generative spectrum of (M, Q)-simulations

$$\begin{array}{ccc} (1, \mathbf{Q}) \text{-similarity} \\ \lesssim_{1, \mathbf{Q}} \end{array} & \longrightarrow & \begin{array}{c} (2, \mathbf{Q}) \text{-similarity} \\ \lesssim_{2, \mathbf{Q}} \end{array} & \longrightarrow & \longrightarrow & \begin{array}{c} \mathbf{Q} \text{-trace inclusion} \\ \sqsubseteq_{\mathbf{Q}} \end{array}$$

Fig. 1: A generative spectrum, parameterised by the observation preorder \mathbf{Q}

observation preorder ${\bf Q}$	$(1, \mathbf{Q})$ -simulation	\mathbf{Q} -trace inclusion $\sqsubseteq_{\mathbf{Q}}$
=	standard simulation	finite trace inclusion
$=_{rem_{\{\tau\}}}$	weak simulation	weak trace inclusion
Q		refinement \preceq^Q_{err} for exception
$\dot{Q} \cap =_{rem_{\{\tau\} \cup \overline{\Omega_{red}}}}$	(new instances)	refinement \preceq^Q_{nd} for nondeterminism
$\dot{Q} \cap =_{rem_{\{\tau\}}}$		refinement $\preceq^Q_{\sf io}$ for I/O

Table 1: Instances of the two ends of the generative spectrum (see Sec. 4 for details)

- Goal: extend counting simulation to a wider class of effects
 - Starting point: 🔽 exception 🗙 nondeterminism 🗙 I/O

- Challenge 1: varying observation
 - Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
 - Solution 2: limited \exists
- Contribution: a *generative spectrum* of (M, Q)-simulations
 - Result: exception nondeterminism I/O

Future work 1: bunching branches

- X probabilistic choice
 - a naive attempt yields a false refinement:

 $or_{0.5}(1,1) \sqsubseteq_{\leq_+} or_{0.5}(0,1)$

• Idea: from nondeterministic automata to weighted automata?

Future work 2: efficient solving

• $p \leq^{?} p' \iff p \leq_{M, Q} p'$ for nondeterministic automata $\mathscr{A}(p), \mathscr{A}(p')$

that represent whole execution of p, p'

 \Leftarrow reachability in a graph "pairing" $\mathscr{A}(p)$ with $\mathscr{A}(p')$

- polynomial time solving, based on whole execution
 - Idea: solving without executing programs
 - using TRS techniques? [M. & Hamana, FLOPS '24]

- Goal: extend counting simulation to a wider class of effects
 - Starting point: \checkmark exception \thickapprox nondeterminism \bigstar I/O

- Challenge 1: varying observation
 - Solution 1: "observation preorder" on traces
- Challenge 2: branching effects
 - Solution 2: limited \exists
- Contribution: a *generative spectrum* of (M, Q)-simulations
 - Result: 🗸 exception 🗸 nondeterminism 🗸 I/O
 - (with a game-theoretic characterisation)
 - (with the up-to technique)