Proving Behavioural Apartness CMCS 2024

Ruben Turkenburg¹ Harsh Beohar² Clemens Kupke³ Jurriaan Rot¹

¹Institute for Computing and Information Sciences (iCIS), Radboud University, NL

²Department of Computer Science, University of Sheffield, UK

³Department of Computer & Information Sciences, Strathclyde University, UK

2024-04-07

Overview

- · Notions of equivalence
 - · Bisimilarity (relation lifting), behavioural equivalence

Overview

- Notions of equivalence
 - Bisimilarity (relation lifting), behavioural equivalence
- · Notions of inequivalence/distinguishability
 - · Apartness, complement of equivalence notions
 - Finite proofs? Corresponding distinguishing (modal) formulas
 - (Opposite) Relation lifting (Geuvers and Jacobs: Relating Apartness and Bisimulation): not for distributions
 - Complement of Behavioural Equivalence: Behavioural Apartness \checkmark

Outline

- · What is apartness?
- · Comparing bisimilarity and apartness on transition systems
- The problem with probabilistic systems
- A nicer proof system
- · Future work

Introduction

Apartness

- · Goes back to Brouwer's intuitionism
- · When are two real numbers equal?
- Instead:

$$r_1 \# r_2 := \exists q \in \mathbb{Q}. r_1 < q < r_2 \lor r_2 < q < r_1$$

We can "just" give a q

Bisimilarity on Transition Systems

$$s_1 \leftrightarrow t_1 \iff \forall s_1 \rightarrow s_2. \exists t_1 \rightarrow t_2. s_2 \leftrightarrow t_2 \land t_1 \rightarrow t_2. \exists s_1 \rightarrow s_2. s_2 \leftrightarrow t_2$$

Bisimilarity on Transition Systems

$$s_1 \leftrightarrow t_1 \iff \forall s_1 \rightarrow s_2 . \exists t_1 \rightarrow t_2 . s_2 \leftrightarrow t_2 \land \forall t_1 \rightarrow t_2 . \exists s_1 \rightarrow s_2 . s_2 \leftrightarrow t_2$$

Proving Bisimilarity?

$$\frac{\vdots}{x_1 \leftrightarrow y_2} \qquad \frac{\vdots}{x_1 \leftrightarrow y_1} \\ \frac{x_1 \leftrightarrow y_2}{x_1 \leftrightarrow y_2} \qquad \frac{x_1 \leftrightarrow y_1}{x_1 \leftrightarrow y_1}$$

Apartness on Transition Systems

$$s_1 \# t_1 \iff \exists s_1 \rightarrow s_2. \ \forall t_1 \rightarrow t_2. \ s_2 \# t_2 \lor \exists t_1 \rightarrow t_2. \ \forall s_1 \rightarrow t_2. \ s_2 \# t_2$$

Apartness on Transition Systems

$$s_1 \# t_1 \iff \exists s_1 \rightarrow s_2. \ \forall t_1 \rightarrow t_2. \ s_2 \# t_2 \lor \exists t_1 \rightarrow t_2. \ \forall s_1 \rightarrow t_2. \ s_2 \# t_2$$

LFP: Inductive Proofs

Proving Apartness?

$$\frac{\forall y_2 \to y'. x_1 \# y'}{\frac{x_1 \# y_2}{x \# y}}$$

$$\mu_x = 1 |x_1\rangle$$

$$\mu_y = 0.4 |y_1\rangle + 0.6 |y_2\rangle$$

 $x \leftrightarrow y \iff \exists \text{ coupling } \omega \in \mathcal{D}(\underbrace{\leftrightarrow}). \mathcal{D}\pi_1(\omega) = \mu_x \wedge \mathcal{D}\pi_2(\omega) = \mu_y$

 $x \leftrightarrow y \iff \exists \text{ coupling } \omega \in \mathcal{D}(\underline{\leftrightarrow}). \ \mathcal{D}\pi_1(\omega) = \mu_x \land \mathcal{D}\pi_2(\omega) = \mu_y$

$$x \leftrightarrow y \iff \exists \text{ coupling } \omega \in \mathcal{D}(\underbrace{\leftrightarrow}). \mathcal{D}\pi_1(\omega) = \mu_x \wedge \mathcal{D}\pi_2(\omega) = \mu_y$$

$$x \leftrightarrow y \iff \exists \text{ coupling } \omega \in \mathcal{D}(\underbrace{\leftrightarrow}). \ \mathcal{D}\pi_1(\omega) = \mu_x \land \mathcal{D}\pi_2(\omega) = \mu_y$$

$$x \leftrightarrow y \iff \exists \text{ coupling } \omega \in \mathcal{D}(\underbrace{\leftrightarrow}). \mathcal{D}\pi_1(\omega) = \mu_x \wedge \mathcal{D}\pi_2(\omega) = \mu_y$$

$$x \leftrightarrow y \iff \exists \text{ coupling } \omega \in \mathcal{D}(\leftrightarrow). \ \mathcal{D}\pi_1(\omega) = \mu_x \land \mathcal{D}\pi_2(\omega) = \mu_y$$

 $x \# y \iff \forall \text{ couplings } \omega \in \mathcal{D}(\overline{\#}). \mathcal{D}\pi_1(\omega) \neq \mu_x \vee \mathcal{D}\pi_2(\omega) \neq \mu_y$

$$x \ensuremath{\,\,\underline{\leftrightarrow}\,\,} y \iff \forall z \in X. \sum_{z':z \leftrightarrow z'} \mu_x(z') = \sum_{z':z \leftrightarrow z'} \mu_y(z')$$

(Larsen and Skou, 1989/1991)

$$x \# y \iff \exists z \in X. \sum_{z' : \neg(z \# z')} \mu_{x}(z') \neq \sum_{z' : \neg(z \# z')} \mu_{y}(z')$$

$$x \# y \iff \exists z \in X. \sum_{z' : \neg(z \# z')} \mu_{x}(z') \neq \sum_{z' : \neg(z \# z')} \mu_{y}(z')$$

$$x \ \# \ y \ \Longleftrightarrow \ \exists z \in X. \sum_{z' : \neg(z \# z')} \mu_x(z') \neq \sum_{z' : \neg(z \# z')} \mu_y(z')$$

- Can this be determined "step-wise"?
- Do we need the whole apartness/bisimilarity relation?

Proof Rule

$$\forall (x', y') \in R. \ x' \ \# \ y' \qquad \exists z \in \operatorname{supp}(\mu_x) \cup \operatorname{supp}(\mu_y). \ \mu_x[z]_{\overline{R}} \neq \mu_y[z]_{\overline{R}}$$

$$x \ \# \ y$$

 Monotonicity of operator defining precongruences of Aczel & Mendler allows such a rule

Finite Proof

Finite Proof

$$x_{1} # x_{2}$$

$$y_{1} # y_{2}$$

$$x_{2} # y_{1}$$

$$x_{1} # y_{2}$$

$$\mu_{x}[x_{1}]_{\overline{R}} = 0.5 \neq 0.4 = \mu_{y}[x_{1}]_{\overline{R}}$$

$$x # y$$

Some generalisations

State-based systems as coalgebras
$$\gamma: X \to BX$$
 for a (finitary) functor $B: Set \to Set$

Examples

DFAs: $\gamma: X \to 2 \times X^A$, Mealy Machines: $\gamma: X \to \mathcal{P}(B \times X)^A$,

MDPs: $\gamma: X \to \mathcal{D}_s(X)^A$

Distributions	Generally
Supports	States "reachable in one step"
$\mu_x[-]_{\overline{R}}$	$Bq_{\overline{R}}(\gamma(x))$

Reachability

Given $S \subseteq X$, a one-step covering of S is a set $z: Z \subseteq X$ such that transitions from S only reach states in Z

Summing over equivalence classes

$$Bq_{\overline{R}}(\gamma(x)) \neq Bq_{\overline{R}}(\gamma(y))$$

- $q: X \to X/e(\overline{R})$ maps states to equivalence classes
- "Lifting relation to successors"

Extending to more systems

How to obtain proof system for a new type of system?

$$\frac{\forall (x', y') \in R. \ x' \ \# \ y'}{x \ \# \ y} Bq_{\overline{R}}(\gamma(x)) \neq Bq_{\overline{R}}(\gamma(y))$$

Example: MDPs $(\gamma: X \to \mathcal{D}_s(X)^A)$

$$\forall (x', y') \in R. \ x' \# y' \qquad \exists a \in A. \ \exists z \in X. \ \mu_x^a[z]_{\overline{R}} \neq \mu_y^a[z]_{\overline{R}}$$
$$x \# y$$

$$B ::= A \mid \text{Id} \mid B_1 \times B_2 \mid B_1 + B_2 \mid B^A \mid \mathscr{P}B \mid \mathscr{D}_s B$$

More examples

Mealy Machines, Probabilistic Automata, POMDPs, etc.

Conclusion

- · Inequivalence: Apartness rather than Bisimilarity
- · Can be proved in finite steps
 - · Using relation lifting
 - Via behavioural equivalence: also probabilistic systems
- Generalisations
- · Restricting to "reachable" states
- Inductive characterisation of "apartness" on successors
- In the paper: proofs of soundness and completeness (for finitary behaviour functors)

Future Work

- Connection to logics?

Future Work

How different are x and y, really?

Future Work

How different are *x* and *y*, really?

Quantitative Apartness

· Dualising codensity bisimilarity

$$\forall (x', y') \in R. \ x' \#_{c} \ y' \qquad (\gamma(x), \gamma(y)) \in \bigcup_{h : R \supseteq h^{*}\underline{\Omega}} (\tau_{\lambda} \circ Bh)^{*}\underline{\Omega}$$

$$x \#_{c} \ y$$

- Give some λ and h!
- No negative occurrences of $\#_c$ or R!