

Description Logics & Ontology Languages

an Introduction and Overview

Uli Sattler

TEASE-LP 2020

uli.sattler@manchester.ac.uk Department of Computer Science University of Manchester

About me

- Uli Sattler
- Professor of Computer Science in Manchester
- 25+ years of research in
 - knowledge representation and reasoning
 - Description Logics
 - Modal Logic
 - tableau algorithms
 - OWL
 - Ontology Engineering
 - **—** . . .
- http://www.cs.man.ac.uk/~sattler/

About me

- Uli Sattler
- Professor of Computer Soi
- 25+ years of research
 - knowledge
 - Descri
 - Modal L
 - tableau a
 - -OWL
 - Ontology Er
 - ..
- http://www.cs.m
 .c.uk/~sattler/

Please ask questions!

Outline for today

- Setting the scene:
 - how and why people tame logics
- A brief history of Description Logics (DLs)
- Meet ALC, a DL
 - syntax & semantics
 - relationship to FOL & Modal Logic
 - core reasoning problems/services
 - tableau (chase) for \mathcal{ALC}
- Dessert:
 - explanation of entailments/inferences
 - modularity in DLs

Why/how we tame logics?

Logics for Knowledge Representation

We want to make our complex domain knowledge

- e.g., about medicine,
- usable by a software system
- shareable by different people

How it all began...

Semantic Networks

How it all began...

Semantic Networks

Questions:

- is every Whale an Animal?
- can Cats have other things than Fur?
- do Cats have a Vertebra?
- •

Logic to the rescue!

- Describe meaning of pictures/networks by translating them to logic
 - gives well-defined semantics!
- mid-80s Brachmann & Schmolze's KL-ONE
 - a powerful, logic-based KR formalism
 - with tools, reasoners, …
- 1989 Schmidt-Schauß:
 "KL-ONE is undecidable!"
 - not good expressive power for tools
 - too high

Logic to the rescue!

- Describe meaning of pictures/netw by translating them to logic
 - gives well-defined semantics!
- mid-80s Brachmann & Schmolze's
 - a powerful, logic-based KR formalism
 - with tools, reasoners, …
- 1989 Schmidt-Schauß:
 "KL-ONE is undecidable!"
 - not good expressive power for tools
 - too high

Logic to the rescue!

- Describe meaning of pictures/networks by translating them to logic
 - gives well-defined semantics!
- mid-80s Brachmann & Schmolze's KL-ONE
 - a powerful, logic-based KR formalism
 - with tools, reasoners, …
- 1989 Schmidt-Schauß:
 "KL-ONE is undecidable!"
 - not good expressive power for tools
 - too high

We need to tame underlying logic

How to tame logic

- Reduce non-determinism
 - Horn fragments/clauses
- Restrict size of universe
 - no existentials in the head
 - Logic Programming
- Restrict number of variables
 - L2, C2
- Restrict quantifier alternation
 - Bernays–Schönfinkel class
- Restrict shape of universe/localise quantifiers
 - Modal Logic
 - Description Logic
 - Guarded Fragment

How to tame logic

- Reduce non-determinism
 - Horn fragments/clauses
- Restrict size of universe
 - no existentials in the head
 - Logic Programming
- Restrict number of variables
 - L2, C2
- Restrict quantifier alternation
 - Bernays–Schönfinkel class
- Restrict shape of universe/localise quantifiers
 - Modal Logic
 - Description Logic
 - Guarded Fragment

an overview

- are designed for Knowledge Representation
- started in mid-80s with Brachmann & Schmolze's KL-ONE
 - a powerful, logic-based KR formalism
 - with tools, reasoners, ...
 - terminological knowledge representation systems
 - concept languages
- now a relevant part of KR&R
 - logic foundations of
 - Semantic Web
 - ontology languages
- have common off-springs with LP
 - Datalog+/-,
 - Datalog with (limited) existentials in the head

- are designed for Knowledge Representation
- ontology (a DL Knowledge Base) consists of
 - *TBox* for terminological knowledge

```
Patient ≡ Person □ ∃suffersFrom.Disease

Inflammation □ Disease

HeartDisease ≡ Disease □ ∃hasLoc.Heart

Endocarditis ≡ Inflammation □ ∃hasLoc.Endocardium

Endocardium □ Bodypart □ ∃isPartOf.Heart

hasLoc o isPartOf □ hasLoc
```

- are designed for Knowledge Representation
- ontology (a DL Knowledge Base) consists of
 - *TBox* for terminological knowledge

```
Patient ≡ Person □ ∃suffersFrom.Disease

Inflammation □ Disease

HeartDisease ≡ Disease □ ∃hasLoc.Heart

Endocarditis ≡ Inflammation □ ∃hasLoc.Endocardium

Endocardium □ Bodypart □ ∃isPartOf.Heart

hasLoc o isPartOf □ hasLoc
```

→ ABox for assertions or facts

```
Bob:(Person ⊓
∃suffersFrom.(Inflammation ⊓ ∃hasLoc.Endocardium))
```

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL

TBox

```
DL: Inflammation 

□ Disease
```

FOL: $\forall x. \mathsf{Inflammation}(x) \Rightarrow \mathsf{Disease}(x)$

```
DL: HeartDisease ≡ Disease ⊓ ∃hasLoc.Heart
```

FOL:
$$\forall x. \mathsf{HeartDisease}(x) \Leftrightarrow (\mathsf{Disease}(x) \land \exists y. (\mathsf{hasLoc}(x,y) \land \mathsf{Heart}(y))$$

```
DL: hasLoc o isPartOf 

hasLoc based hasLoc
```

FOL: $\forall x, y, z. \mathsf{hasLoc}(x, y) \land \mathsf{isPartOf}(y, z) \Rightarrow \mathsf{hasLoc}(x, z)$

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL

TBox

```
DL: Inflammation 

□ Disease
```

FOL: $\forall x. \mathsf{Inflammation}(x) \Rightarrow \mathsf{Disease}(x)$

```
DL: HeartDisease ≡ Disease ⊓ ∃hasLoc.Heart
```

Existential in head!

```
FOL: \forall x. \mathsf{HeartDisease}(x) \Leftrightarrow (\mathsf{Disease}(x) \land \mathsf{Disease}(x)) \land \mathsf{Disease}(x) \land \mathsf{Disease
```

 $\exists y.(\mathsf{hasLoc}(x,y) \land \mathsf{Heart}(y))$

DL: hasLoc o isPartOf ⊑ hasLoc

FOL: $\forall x, y, z. \mathsf{hasLoc}(x, y) \land \mathsf{isPartOf}(y, z) \Rightarrow \mathsf{hasLoc}(x, z)$

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL

ABox:

DL: Bob:(Person □ ∃suffersFrom.Endocarditis)

FOL: Person(Bob) $\land \exists y$.suffersFrom(Bob, y) \land Endocarditis(y)

DL: (Bob,Mary):hasMother

FOL: hasMother(Bob, Mary)

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL
- are also closely related to modal logics
 - thus to 2-variable/guarded fragment

```
DL: Endocarditis \sqsubseteq Inflammation \sqcap \existshasLoc.Endocardium ML: [u](\neg \mathsf{Endocarditis} \lor (\mathsf{Inflammation} \land \langle \mathsf{hasLoc} \rangle \mathsf{Heart}))

DL: HeartDisease \equiv Disease \sqcap \existshasLoc.Heart ML: [u](\neg \mathsf{HeartDisease} \lor (\mathsf{Disease} \land \langle \mathsf{hasLoc} \rangle \mathsf{Heart})

HeartDisease \lor \neg (\mathsf{Disease} \land \langle \mathsf{hasLoc} \rangle \mathsf{Heart}))
```

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL
- with its own terminology

```
Patient ≡ Person □ ∃suffersFrom.Disease
Inflammation □ Disease
HeartDisease ≡ Disease □ ∃hasLoc.Heart
Endocarditis ≡ Inflammation □ ∃hasLoc.Endocardium
Endocardium □ Bodypart □ ∃isPartOf.Heart
hasLoc o isPartOf □ hasLoc

Bob:(Person □
```

∃suffersFrom.(Inflammation □ ∃hasLoc.Endocardium))

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL
- with its own terminology

unary pred.: Concept

```
Patient ≡ Person □ ∃suffersFrom.Disease

Inflammation □ Disease

HeartDisease ≡ Disease □ ∃hasLoc.Heart

Endocarditis ≡ Inflammation □ ∃hasLoc.Endocardium

Endocardium □ Bodypart □ ∃isPartOf.Heart

hasLoc o isPartOf □ hasLoc
```

Bob:(Person ⊓ ∃suffersFrom.(Inflammation ⊓ ∃hasLoc.Endocardium))

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL
- with its own terminology

Bob:(Person ⊓

binary pred.: Role

unary pred.: Concept

```
Patient ≡ Person □ ∃suffersFrom.Disease

Inflammation □ Disease

HeartDisease ≡ Disease □ ∃hasLoc.Heart

Endocarditis ≡ Inflammation □ ∃hasLoc.Endocardium

Endocardium □ Bodypart □ ∃isPartOf.Heart

hasLoc o isPartOf □ hasLoc
```

∃suffersFrom.(Inflammation □ ∃hasLoc.Endocardium))

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL
- with its own terminology

binary pred.:

Role

unary pred.: Concept

```
Patient ≡ Person □ ∃suffersFrom.Disease
Inflammation □ Disease
HeartDisease ≡ Disease □ ∃hasLoc.Heart
Findocarditis ≡ Inflammation □ ∃hasLoc.Endocardium
constant:
Individual

ocardium □ Bodypart □ ∃isPartOf.Heart
Loc o isPartOf □ hasLoc
```

```
Bob:(Person □ ∃suffersFrom.(Inflammation □ ∃hasLoc.Endocardium))
```

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL
- come with classical FOL semantics

```
Patient ≡ Person □ ∃suffersFrom.Disease

Inflammation □ Disease

HeartDisease ≡ Disease □ ∃hasLoc.Heart

Endocarditis ≡ Inflammation □ ∃hasLoc.Endocardium

Endocardium □ Bodypart □ ∃isPartOf.Heart

hasLoc o isPartOf □ hasLoc
```

⊨ Endocarditis ⊑ HeartDisease

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL
- come with classical FOL semantics

```
Patient ≡ Person □ ∃suffersFrom.Disease
Inflammation □ Disease
HeartDisease ≡ Disease □ ∃hasLoc.Heart
Endocarditis ≡ Inflammation □ ∃hasLoc.Endocardium
Endocardium □ Bodypart □ ∃isPartOf.Heart
hasLoc o isPartOf □ hasLoc

Bob:(Person □
```

∃suffersFrom.(Inflammation □ ∃hasLoc.Endocardium))

⊨ Bob:Patient

- sit nicely/mostly between Propositional and FO-Logic
- can be translated into FOL
- come with classical FOL semantics

```
Patient ≡ Person □ ∃suffersFrom.Disease
Inflammation □ Disease
HeartDisease ≡ Disease □ ∃hasLoc.Heart
Endocarditis ≡ Inflammation □ ∃hasLoc.Endocardium
Endocardium □ Bodypart □ ∃isPartOf.Heart
hasLoc o isPartOf □ hasLoc

Bob:(Person □
```

∃suffersFrom.(Inflammation □ ∃hasLoc.Endocardium))

⊨ Bob:Patient ⊓ ∃suffersFrom.HeartDisease

Given an ontology O

• test whether there is an interpretation I with $I \models \alpha$ for each $\alpha \in O$

Given an ontology O

• test whether there is an interpretation *I* with $I \models \alpha$ for each $\alpha \in O$

Consistency

Given an ontology O

• test whether there is an interpretation *I* with $I \models \alpha$ for each $\alpha \in O$

Consistency

• a concept A, test whether $O \models A \sqsubseteq \bot$

Satisfiability

Given an ontology O

• test whether there is an interpretation *I* with $I \models \alpha$ for each $\alpha \in O$

Consistency

a concept A, test whether O ⊨ A ⊑ ⊥

Satisfiability

• two concepts A, B, test whether $O \models A \sqsubseteq B$

Subsumption

Given an ontology O

• test whether there is an interpretation *I* with $I \models \alpha$ for each $\alpha \in O$

Consistency

a concept A, test whether O ⊨ A ⊑ ⊥

Satisfiability

• two concepts A, B, test whether $O \models A \sqsubseteq B$

Subsumption

• individual b, concept name A, test whether O ⊨ b:A

Instanceship

Classification given ontology O, test

- consistency of O
- for each concept name A, whether $O \models A \sqsubseteq \bot$
- for each concept names A, B, whether $O \models A \sqsubseteq B$
- for each individual b, concept name A, whether $O \models b:A$
- → inferred concept hierarchy

Classification given ontology O, test

 n^2 entailment tests

- consistency of O
- for each concept name A ,
- for each concept names A, B,

whether $O \models A \sqsubseteq B$

whether $O \models A \sqsubseteq \bot$

- for each individual b, concept name A, whether $O \models b:A$
- → inferred concept hierarchy

Classification given ontology O, test

 n^2 entailment tests

whether $O \models A \sqsubseteq \bot$

whether $O \models A \sqsubseteq B$

- consistency of O
- for each concept name A ,
- for each concept names A, B,
- for each individual b, concept name A, whether $O \models b:A$
- → inferred concept hierarchy
- complexity of each entailment test O ⊨?... is
 - between AC₀
 - via polynomial
 - to NExpTime-complete

The University of Manchester

Complexity of Entailment Checking

ल		-																																																																												
of Mai		Name	Meaning																																																																											
	First Order Logic	Undecidable	no sound, complete & terminating algorithm						. & m	e & ım	∌ & m	& n	& n	& n	& n	& า	& เ	& ۱	<u>ፄ</u> I	& เ	& 1	<u>&</u> ۱	K	ζ.	K.	ζ	L																																																			
		NExpTime	non-det. exponential time						al	al	al	ı l	ı l	ı	I																																																															
		ExpTime	exponential time																																																																											
		PSpace	polynomial space																																																																											
	Boolean Logic) NP	non-det. polynomial time						1	al																																																																				
		Р	polynomial time																																																																											
		L	logarithmic space																																																																											

The University

Complexity of Entailment Checking

• classification: given ontology O, test

 n^2 entailment tests

whether $O \models A \sqsubseteq \bot$

whether $O \models A \sqsubseteq B$

- consistency of O
- for each concept name A ,
- for each concept names A, B,
- for each individual b, concept name A, whether $O \models b:A$
- → inferred concept hierarchy
- complexity of each entailment test O ⊨?... is
 - between AC₀
 - via polynomial
 - to NExpTime-complete
- specialised DL reasoners are implemented & optimised
 - ORE reasoner competitions:
 - > 10 top notch reasoners
 - able to classify large, complex ontologies with >300K terms

Description Logic Models

as FOL fragments, they have structured models

Description Logic Models

- as FOL fragments, they have structured models:
 - most DLs have a tree model property
 - despite constants, transitive roles
 - some have the finite model property:
 - *ALC*: □, □, ¬, ∃, ∀
 - others lack it: ALC extended with
 - inverse/converse roles and e.g., both hasLoc and isLocatedIn
 - number restrictions can enforce infinite models e.g., (≤ 1 hasMother)

Description Logics

ALC, a basic DL

ALC, a basic Description Logics

Syntax:

Ontology: finite set of axioms

• Axioms: $C \equiv D, C \sqsubseteq D, a:C$

• Concepts C, D: $C \sqcap D$, $C \sqcup D$, $\neg C$ (full Booleans),

∃*r*.*C*, ∀*r*.*C*

Patient ≡ Person ⊓ ∃suffersFrom.Disease

Inflammation

□ Disease

HeartDisease ≡ Disease ⊓ ∃hasLoc.Heart

Endocarditis ≡ Inflammation ⊓ ∃hasLoc.Endocardium

Endocardium

■ Bodypart

¬ ∃isPartOf.Heart

Bob:(Person ⊓

∃suffersFrom.(Inflammation □ ∃hasLoc.Endocardium □

∀causedBy.BactInfection))

ALC, a basic Description Logics

Semantics: based on interpretations $I = (\Delta, \cdot)$ with

- Δ being a non-empty set
- A | ⊆ ∆
- $r \subseteq \Delta \times \Delta$

Syntax	Interpretation
Human ⊓ Male	Human ^I ∩ Male ^I
Doctor ⊔ Lawyer	Doctor ^I ∪ Lawyer ^I
¬Male	$\Delta \setminus Male^{ }$
∃isPartOf.Heart	$\{e \in \Delta \mid \text{there is some f:} \\ (e,f) \in \textit{isPartOf}^l \text{ and } f \in \textit{Heart}^l\}$
∀causedBy.BactInf	$\{e \in \Delta \mid \text{ for all } f \in \Delta \text{: if } $ $(e,f) \in \text{\it causedBy}^l \text{ then } f \in \text{\it BactInf}^l\}$

ALC, a basic Description Logics

Semantics: based on interpretations $I = (\Delta, \cdot)$ with

- Δ being a non-empty set
- A¹ ⊆ ∆
- $r^{\downarrow} \subseteq \Delta \times \Delta$

Axioms	Interpretation: for / to be a model ofit has to satisfy
A ⊑ B	$A^I \subseteq B^I$
A≡B	A' = B'
b:B or B(b)	$b^{\prime} \in B^{\prime}$

Reminder:

a model of O

Given an ontology O

• test whether there is an interpretation / with $I = \alpha$

for each $\alpha \in O$

Consistency

a concept A, test whether O ⊨ A ⊑ ⊥

 $A^{I \neq \emptyset}$ in some model I of O

Satisfiability

• two concepts A, B, test whether $O \models A \sqsubseteq B$

 $A^{I} \subseteq B^{I}$ in each model I of O

Subsumption

• individual b, concept name A, test whether O = bA

Instanceship

 $b \in A^I$ in each model I of O

Some Exercises

Create an ontology

- 1. that is consistent.
- 2. that is not consistent.
- 3. with an unsatisfiable concept.
- 4. that entails but does not contain $C \sqsubseteq D$.
- 5. that entails but does not contain a: C.

Description Logic Reasoning

- *classification*: involves n^2 entailment tests
- complexity of each entailment test O ⊨?... is high
- specialised DL reasoners are implemented & optimised
 - ORE reasoner competitions:

- For ALC,
 all reasoning tasks can be reduced to (in)consistency
 - → we only need a consistency checker
 ⇔

Theorem 2 Let \mathcal{O} be an ontology and a an individual name **not** in \mathcal{O} . Then

- 1. C is satisfiable w.r.t. \mathcal{O} iff $\mathcal{O} \cup \{a : C\}$ is consistent
- 2. \mathcal{O} is coherent iff, for each concept name A, $\mathcal{O} \cup \{a : A\}$ is consistent
- 3. $\mathcal{O} \models A \sqsubseteq B$ iff $\mathcal{O} \cup \{a \colon (A \sqcap \neg B)\}$ is **not** consistent
- 4. $\mathcal{O} \models b \colon B \text{ iff } \mathcal{O} \cup \{b \colon \neg B\} \text{ is not consistent }$

- ...similar to chase
- a decision procedure for *consistency of* \mathcal{ALC} *ontologies*
 - sound
 - complete
 - terminating
- takes input ontology $\mathcal{O} = \mathcal{T} \cup \mathcal{A}$
 - transforms all concepts in O into NNF
 - works on set of ABoxes
 - starts with $\{\mathcal{A}\}$ and applies tableau rules until
 - no more rules apply complete or
 - clash occurs
 - returns "O is consistent" if complete, clash-free ABox was built
 - this ABox can then be unravelled into an infinite model of input

DeMorgan's law, duality between ∀, ∃

```
a\colon C_1\sqcap C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\not\subseteq \mathcal{A}
□-rule:
               then replace \mathcal A with \mathcal A \cup \{a\colon C_1, a\colon C_2\}
                       a\colon C_1\sqcup C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\cap \mathcal{A}=\emptyset
⊔-rule:
               then replace \mathcal A with \mathcal A \cup \{a \colon C_1\} or with \mathcal A \cup \{a \colon C_2\}
                        a:\exists s.C\in\mathcal{A}, and there is no b with
∃-rule:
                        \{(a,b)\colon s,\ b\colon C\}\subseteq \mathcal{A}
               then create a new individual c and replace \mathcal A with \mathcal A \cup \{(a,c)\colon s,\ c\colon C\}
                    \{a: \forall s.C, \ (a,b): s\} \subseteq \mathcal{A}, and b: C \not\in \mathcal{A}
∀-rule:
               then replace \mathcal{A} with \mathcal{A} \cup \{b : C\}
GCI-rule: if
                    C \sqsubseteq D \in \mathcal{T}, and
                     if C is a concept name, a:C\in\mathcal{A} but a:D\not\in\mathcal{A},
               then replace \mathcal A with \mathcal A \cup \{a \colon D\}
                else if a: (\dot{\neg} C \sqcup D) \not\in \mathcal{A} for a in \mathcal{A},
                then replace \mathcal{A} with \mathcal{A} \cup \{a : (\dot{\neg} C \sqcup D)\}
```

Observations:

- all rules add things
- ⊔-rule is *non-deterministic*

```
a\colon C_1\sqcap C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\not\subseteq \mathcal{A}
□-rule:
                then replace \mathcal A with \mathcal A \cup \{a\colon C_1, a\colon C_2\}
                        a\colon C_1\sqcup C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\cap \mathcal{A}=\emptyset
⊔-rule:
                then replace {\mathcal A} with {\mathcal A} \cup \{a \colon C_1\} or with {\mathcal A} \cup \{a \colon C_2\}
                        a:\exists s.C\in\mathcal{A}, and there is no b with
∃-rule:
                        \{(a,b)\colon s,\ b\colon C\}\subseteq \mathcal{A}
                then create a new individual c and replace \mathcal A with \mathcal A \cup \{(a,c)\colon s,\ c\colon C\}
                     \{a\colon orall s.C,\; (a,b)\colon s\}\subseteq \mathcal{A}, and b\colon C
ot\in\mathcal{A}
∀-rule:
                then replace \mathcal{A} with \mathcal{A} \cup \{b : C\}
GCI-rule: if
                     C \sqsubseteq D \in \mathcal{T}, and
                     if C is a concept name, a:C\in\mathcal{A} but a:D\not\in\mathcal{A},
                then replace \mathcal{A} with \mathcal{A} \cup \{a : D\}
                 else if a: (\dot{\neg} C \sqcup D) \not\in \mathcal{A} for a in \mathcal{A},
                then replace \mathcal{A} with \mathcal{A} \cup \{a : (\dot{\neg} C \sqcup D)\}
```

Observations:

- all rules add things
- ⊔-rule is *non-deterministic*

```
a\colon C_1\sqcap C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\not\subseteq \mathcal{A}
□-rule:
                                                                                                                  Let's work out 2
                                                                                                                 examples...
               then replace \mathcal A with \mathcal A \cup \{a\colon C_1, a\colon C_2\}
                       a\colon C_1\sqcup C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\cap \mathcal{A}=\emptyset
⊔-rule:
               then replace \mathcal A with \mathcal A \cup \{a\colon C_1\} or with \mathcal A \cup \{a\colon C_2\}
                       a:\exists s.C\in\mathcal{A}, and there is no b with
∃-rule:
                        \{(a,b)\colon s,\ b\colon C\}\subseteq \mathcal{A}
               then create a new individual c and replace \mathcal A with \mathcal A \cup \{(a,c)\colon s,\ c\colon C\}
                      \{a\colon \forall s.C,\; (a,b)\colon s\}\subseteq \mathcal{A}, and b\colon C\not\in \mathcal{A}
∀-rule:
               then replace \mathcal{A} with \mathcal{A} \cup \{b : C\}
GCI-rule: if
                     C \sqsubseteq D \in \mathcal{T}, and
                    if C is a concept name, a:C\in\mathcal{A} but a:D\not\in\mathcal{A},
               then replace \mathcal{A} with \mathcal{A} \cup \{a : D\}
                else if a: (\dot{\neg} C \sqcup D) \not\in \mathcal{A} for a in \mathcal{A},
               then replace \mathcal{A} with \mathcal{A} \cup \{a : (\dot{\neg} C \sqcup D)\}
```

Observations:

- all rules add things
- □-rule is nondeterministic

```
\sqcap-rule: if a\colon C_1\sqcap C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\not\subseteq \mathcal{A} then replace \mathcal{A} with \mathcal{A}\cup \{a\colon C_1,a\colon C_2\}
```

 \sqcup -rule: if $a\colon C_1\sqcup C_2\in \mathcal{A}$, and $\{a\colon C_1,a\colon C_2\}\cap \mathcal{A}=\emptyset$

then replace ${\mathcal A}$ with ${\mathcal A} \cup \{a\colon C_1\}$ or with ${\mathcal A} \cup \{a\colon C_2\}$

 \exists -rule: if $a:\exists s.C\in\mathcal{A}$, and there is no b with $\{(a,b):s,\ b:C\}\subseteq\mathcal{A}$

then create a new individual c and replace $\mathcal A$ with $\mathcal A \cup \{(a,c)\colon s,\; c\colon C\}$

 \forall -rule: if $\{a : \forall s.C, \ (a,b) : s\} \subseteq \mathcal{A}$, and $b : C \not\in \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{b : C\}$

GCI-rule: if $C \sqsubseteq D \in \mathcal{T}$, and if C is a concept name, $a \colon C \in \mathcal{A}$ but $a \colon D \not\in \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{a \colon D\}$ else if $a \colon (\dot{\neg} C \sqcup D) \not\in \mathcal{A}$ for a in \mathcal{A} , then replace \mathcal{A} with $\mathcal{A} \cup \{a \colon (\dot{\neg} C \sqcup D)\}$

Let's work out 2 examples...

Not terminating

Proper Tableau Rules for \mathcal{ALC}

```
if a: C_1 \sqcap C_2 \in \mathcal{A}, and \{a: C_1, a: C_2\} \not\subseteq \mathcal{A}
□-rule:
               then replace \mathcal{A} with \mathcal{A} \cup \{a \colon C_1, a \colon C_2\}
                    a\colon C_1\sqcup C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\cap \mathcal{A}=\emptyset
⊔-rule:
               then replace \mathcal{A} with \mathcal{A} \cup \{a \colon C_1\} or with \mathcal{A} \cup \{a \colon C_2\}
                     a: \exists s. C \in \mathcal{A}, a is not blocked, and there is no b with
∃-rule:
                       \{(a,b)\colon s,\; b\colon C\}\subseteq \mathcal{A}
               then create a new individual c and replace \mathcal A with \mathcal A \cup \{(a,c)\colon s,\ c\colon C\}
              if \{a: \forall s.C, \ (a,b): s\} \subseteq \mathcal{A}, and b: C \not\in \mathcal{A}
∀-rule:
               then replace \mathcal{A} with \mathcal{A} \cup \{b : C\}
GCI-rule: if C \sqsubseteq D \in \mathcal{T}, and
                    if C is a concept name, a:C\in\mathcal{A} but a:D\not\in\mathcal{A},
               then replace \mathcal{A} with \mathcal{A} \cup \{a : D\}
                else if a: (\dot{\neg} C \sqcup D) \not\in \mathcal{A} for a in \mathcal{A},
               then replace \mathcal{A} with \mathcal{A} \cup \{a \colon (\dot{\neg} C \sqcup D)\}
```

Proper Tableau Rules for ALC

These rules lead to terminating algorithm


```
a\colon C_1\sqcap C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\not\subseteq \mathcal{A}
□-rule:
                then replace \mathcal{A} with \mathcal{A} \cup \{a \colon C_1, a \colon C_2\}
                      a\colon C_1\sqcup C_2\in \mathcal{A}, and \{a\colon C_1,a\colon C_2\}\cap \mathcal{A}=\emptyset
⊔-rule:
               then replace {\mathcal A} with {\mathcal A} \cup \{a \colon C_1\} or with {\mathcal A} \cup \{a \colon C_2\}
                      a: \exists s.C \in \mathcal{A}, a is not blocked, and there is no b with
∃-rule:
                        \{(a,b)\colon s,\ b\colon C\}\subseteq \mathcal{A}
                then create a new individual c and replace \mathcal A with \mathcal A \cup \{(a,c)\colon s,\ c\colon C\}
                     \{a\colon orall s.C,\; (a,b)\colon s\}\subseteq \mathcal{A}, and b\colon C
ot\in \mathcal{A}
∀-rule:
                then replace \mathcal{A} with \mathcal{A} \cup \{b : C\}
GCI-rule: if C \sqsubseteq D \in \mathcal{T}, and
                     if C is a concept name, a: C \in \mathcal{A} but a: D \not\in \mathcal{A},
                then replace \mathcal{A} with \mathcal{A} \cup \{a : D\}
                 else if a: (\dot{\neg} C \sqcup D) \not\in \mathcal{A} for a in \mathcal{A},
                then replace \mathcal{A} with \mathcal{A} \cup \{a \colon (\dot{\neg} C \sqcup D)\}
```

Tableau and Reasoning in DLs

This tableau

- is a decision procedure for \mathcal{ALC}
 - can be made to run in PSpace
- is very naive
 - needs serious consideration & optimisation to work
- is only for \mathcal{ALC}
 - needs more rules/blocking for more expressive DLs
- only decides consistency of input ontology
 - classification needs much more & more optimisation
- is only 1 of many DL reasoning techniques
 - consequence-driven
 - hyper-tableau-based

Description Logics & OWL

The Web Ontology Language OWL

Vision of Semantic Web led to web ontology languages

W3C set up Web-Ontology Working Groups

E. Shepard, Winnie-the-Pooh [A. A. Milne]

The Web Ontology Language OWL

OWL 2 is a W3C recommendation

- based on a DL more expressive than \mathcal{ALC}
 - inverse roles, cardinality restrictions, role (chain) inclusions,...
 - datatypes (e.g., integers, strings) for features (e.g., weight, age, name)
- where axioms, concepts, etc. can be annotated
 - who wrote axiom? Who introduced a term?
 - labels, synonyms, preferred labels, different languages, etc.
- with an imports mechanism for modular development/reuse
- with a versioning mechanism
- in different syntaxes
- with 3 fragments/profiles for more efficient reasoning
 - each optimal for complexity class

What OWL has changed

Having a stable, standardized syntax

- more tools:
 - reasoners
 - APIs
 - editors/IDEs
- more users designing more ontologies:
 - enthusiasm around Semantic Web
 - requirements in bio-health applications
 - see e.g. BioPortal repository: 621 OWL ontologies
- more requirements:
 - (non-logician) domain experts require support to build/maintain/use large scale, highly axiomatised ontologies
 - performance/scalability
 - novel reasoning problems

Explanations of Entailments

demo and brief tour

Explanation of Entailments

- Entailments are either
 - intended or

 - have to be understood and explained

Two approaches to Explanation

- 1. show **proofs**:
 - pick suitable calculus
 - present proof steps

Two approaches to Explanation

- 1. show **proofs**:
- pick suitable calculus
- present proof steps

- 2. show justifications:
 - Let $\mathcal{O} \models \alpha$.

 $\mathcal{J} \subseteq \mathcal{O}$ is a **justification** for α

- $\mathcal{J} \models \alpha$ and
- \mathcal{J} is minimal
- also called kernels
- 1 entailment can have several entailments
- to repair α , weaken each justification
- to trust α , understand easiest justification

Two approaches to Explanation

- 1. show **proofs**:
- pick suitable calculus
- present proof steps
- approach often followed

2. show justifications:

• Let $\mathcal{O} \models \alpha$.

 $\mathcal{J} \subseteq \mathcal{O}$ is a **justification** for α

- $\mathcal{J} \models \alpha$ and
- \mathcal{J} is minimal
- also called kernels
- 1 entailment can have several entailments

require...

X	user to understand calculus & steps	
X	modifications to reasoner to produce proofs	
X	suitable summarization & choice of proof	
X	user to be happy with	X

Justifications

- Reveal needle in haystack
- How can we compute them?
 - Glass-box: add tracing mechanism to reasoner
 - Black-box: use Reiter's hitting sets
 - interesting:
 - black-box as good as glass-box
 - 'true' entailments are easier than ∅ ⊨ ⊤⊑⊥
- Check out in Protégé
 - → demo
- Justifications can be refined:
 - lemmatise
 - remove superfluous axiom parts: laconic
- Explaining 1 entailment is not enough:
 - imagine reasoner finds 144/395 classes are unsatisfiable

Modularity

for re-using terms from existing ontologies

- for re-using terms from existing ontologies
- collaboratively working on an ontology

- for re-using terms from existing ontologies
- collaboratively working on an ontology
- understanding an ontology, its
 - content
 - modelling
 - structure

- for re-using terms from existing ontologies
- collaboratively working on an ontology
- understanding an ontology

optimising automated reasoning

classification

- is a *subset* of an ontology
- that covers a set of terms

- is a subset of an ontology
- that covers a set of terms

Given an ontology \mathcal{O} , a signature Σ , a Σ -module \mathcal{M} of \mathcal{O} is

- a subset of O
- that is deductively indistinguishable from \mathcal{O} , i.e,
 - for all α over Σ

$$\mathcal{O} \models \alpha \text{ iff } \mathcal{M} \models \alpha$$

- is a subset of an ontology
- that covers a set of terms

Given an ontology \mathcal{O} , a signature Σ , a Σ -module \mathcal{M} of \mathcal{O} is

- a subset of \mathcal{O}
- that is deductively indistinguishable from \mathcal{O} , i.e,
 - for all α over Σ

$$\mathcal{O} \models \alpha \text{ iff } \mathcal{M} \models \alpha$$

In which logic?

- is a *subset* of an ontology
- that covers a set of terms

Any? Minimal? Good?

Given an ontology \mathcal{O} , a signature Σ , a Σ -module \mathcal{M} of \mathcal{O} is

- a subset of O
- that is deductively indistinguishable from \mathcal{O} , i.e,
 - for all α over Σ

$$\mathcal{O} \models \alpha \text{ iff } \mathcal{M} \models \alpha$$

In which logic?

- is a subset of an ontology
- that covers a set of terms

Any? Minimal? Good?

Conservative extensions

Given an ontology \mathcal{O} , a signature Σ , a Σ -module \mathcal{M} of \mathcal{O} is

- a subset of O
- that is deductively indistinguishable from \mathcal{O} , i.e,
 - for all α over Σ

$$\mathcal{O} \models \alpha \text{ iff } \mathcal{M} \models \alpha$$

In which logic?

- is a subset of an ontology
- that covers a set of terms

Any? Minimal? Good?

Conservative extensions

Given an ontology \mathcal{O} , a signature Σ , a Σ -module \mathcal{M} of \mathcal{O} is

- a subset of O
- that is deductively indistinguishable from \mathcal{O} , i.e,
 - for all α over Σ

$$\mathcal{O} \models \alpha \text{ iff } \mathcal{M} \models \alpha$$

In which logic?

How to test/ extract?

- 1. realisable
 - decidable
 - low complexity

- 1. realisable
- 2. unique

- 1. realisable
- 2. unique
- 3. small (?)

- 1. realisable
- 2. unique
- 3. small (?)
- 4. good logical properties

- 1. realisable
- 2. unique
- 3. small (?)
- 4. good logical properties
 - self-contained:

M and O have same entailments regarding $\Sigma \cup sign(M)$

Otherwise:

2 kinds of terms (covered & not)

- 1. realisable
- 2. unique
- 3. small (?)
- 4. good logical properties
 - self-contained:
 M and O have same entailments regarding Σ ∪ sign(M)

Encapsulation!

depleting:
 O\M has no (real) entailments regarding Σ ∪ sign(M)

- 1. realisable
- 2. unique
- 3. small (?)
- 4. good logical properties
 - self-contained:
 M and O have same entailments regarding Σ ∪ sign(M)

Rational

- depleting:
 O\M has no (real) entailments regarding Σ ∪ sign(M)
- robust for certain operations:
 - vocabulary restriction:
 M is also a Σ'-module of O for Σ' ⊆ Σ

• ...

- (x) (y) x-module $(\mathcal{O}, \Sigma) \subseteq y$ -module (\mathcal{O}, Σ)
 - intractable . . . undecidable
 - as difficult as reasoning
 - tractable

- intractable . . . undecidable
- as difficult as reasoning
- tractable

B. Cuenca Grau

S. Ghilardi

C.Lutz

F. Wolter

. . .

iversity

Some Relevant Types of Modules

- (x) (y) x-module $(\mathcal{O}, \Sigma) \subseteq y$ -module (\mathcal{O}, Σ)
 - intractable . . . undecidable
 - as difficult as reasoning
 - tractable

- B. Cuenca Grau
- S. Ghilardi
- C.Lutz
- F. Wolter

...

iversity

Some Relevant Types of Modules

Nice: language independent!

- undecidable for EL, acyclic ALC TBoxes...
- PT—NExpTime-c for tiny DLs

- intractable . . . undecidable
- as difficult as reasoning
- tractable

- B. Cuenca Grau
- S. Ghilardi
- C.Lutz
- F. Wolter

...

Nice: language independent!

- undecidable for EL, acyclic ALC TBoxes...
- PT—NExpTime-c for tiny DLs
- ExpTime-c for EL
- 2ExpTime-c for ALC ALCQI
- undecidable for ALCQIO and thus OWL

- $(\mathcal{O}, \Sigma) \subseteq y$ -module (\mathcal{O}, Σ)
- intractable . . . undecidable
- as difficult as reasoning
- tractable

- B. Cuenca Grau
- S. Ghilardi
- C.Lutz
- F. Wolter

. . .

Complexity of Entailment Checking versus Conservativity Checking

- intractable . . . undecidable
- as difficult as reasoning
- tractable

B. Cuenca Grau

S. Ghilardi

C.Lutz

F. Wolter

. . .

sometimes huge

The End

- A brief tour through various aspects of DLs
 - including tableau, modules, and explanations
- What was left out
 - details, proofs, complexity bounds
 - implementation and optimisations
 - many extensions & restrictions, EL, SHIQ, SROIQ, ...
 - variations: temporal, non-monotonic, fuzzy, metric, ...
 - reasoning problems:
 - conjunctive query answering
 - rewriting, msc, lcs, unification, matching,
 - decomposition
 - alignment, diffing

