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Type systems are a powerful tool in modern programming languages. There is a lot of previous work
on typing logic programs (some examples include [20, 6, 12, 7, 19, 14, 11, 17, 8, 18, 16, 15]). We argue
that, to be successfully adopted by the logic programming community, the first step is to design a type
system that is able to catch obvious and relevant errors at compile-time. To do so, in [1] we defined
a type system which describes polymorphic well-typings for logic programs while respecting the main
properties that make types useful and semantically sound.

Most of the work on types for logic programming was based on conservative approximations of the
program’s success set [20, 6, 19, 5, 7]. The resulting types of this approach were what we call open types
[2]. Open types give little useful information, in a lot of even simple cases, such as the predicate append.
The following are the types for each argument of the predicate append, when using type inference as
a conservative approximation of the success set of the predicate, where “+” is type disjunction and “A”
and “B” are type variables:

t1 = [] + [A | t1],

t2 = B,

t3 = B + [A | t3].

The types for the second and third argument do not filter any possible term, since they have a type
variable as a member of the type definition, which can be instantiated with any type. And in fact, some
calls to append succeed even if unintended, such as append([],1,1).

The solution we found for these arguably over-general types is the definition of closed types [2],
which are types where every occurrence of a type variable in constrained. We also defined a closure
operation, which transforms open types into closed types, using only information provided by the set of
types themselves. Applying the closure to the above set of types, the resulting set would be:

t1 = [] + [A | t1],

t2 = [] + [A | t2],

t3 = [] + [A | t3],

which are the “intended” types for the append predicate.

Semantics We first defined a formal semantics for descriptive types, meaning that the semantics of
(untyped) programs and the semantics for types are defined separately. This differs from previous formal
semantics for prescriptive types in logic programming which rely on a typed semantics for explicitly
typed logic programs [11, 9]. We then prove the soundness of our type system with respect to a semantic
typing relation [1]. Our semantics for programs uses a three-valued logic, with a third value wrong, rep-
resenting a type error in run-time (following Milner semantic value wrong for functional programming
[13]). The logic itself was previously defined by Kleene [10] and further interpreted by Bochvar [4] and
Beall [3] to catch the notion of nonsense.

Example 1: Let p be a predicate with the following predicate definition:
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p(X) :- X = 1 ; X = a.

Let [[]]I,σ denote the semantic function that takes a logic program, or part of it, and returns a logic value
in the set {true, f alse, wrong}. When we have an interpretation function I, such that:
I(1) = 1, I(a) = a, where B1 and B2 are two semantic domains such that 1 ∈ B1 and a ∈ B2,
I(p) = fp, such that fp :: B1∪B2→ Bool,
Given two semantic assignments for variable, σ1 and σ2, the semantics of this predicate is [[p(X) :−X =
1;X = a.]]I,[σ1,σ2]

= [[X = 1]]I,σ1
∨ [[X = a]]I,σ2

⇒ [[p(X)]]I,σ1
∧ [[p(X)]]I,σ2

.
The semantic typing relation {X : int + atom} |=P,I (p(X) : −X = 1;X = a.) : bool, means that we
can type the predicate definition giving the type int + atom to the variable X. This corresponds to
∃[Γ1,Γ2].∀[σ1,σ2].

[
[[Γ1]]I,[σ1]

∧ [[Γ2]]I,[σ2]
⇒ [[p(X) :−X = 1;X = a.]]I,σ̄ ∈ T[[bool]]I

]
.

Note that the semantics of type bool is given by T[[bool]]I = {true, f alse}. This means that the value
wrong cannot be attributed to the predicate definition when left hand side is true. Now suppose that
Γ1 = {X : int} and Γ2 = {X : atom}, where B1 is the domain of integers and B2 the domain of atoms.
If σ1(X) ∈ B1 and σ2(X) ∈ B2, the left hand side of the implication is true. The right hand side is either
true or false, since applying fp to any of the σi(X) does not return wrong and neither does any of the
unifications in the bodies of the clause. Therefore the semantic value of the clause is not wrong.
If one of the σi(X) does not yield a value in the previous domains, the right hand side of the implication is
wrong, since one of the unifications yields wrong. But the left hand side is false, since [[X ]]I,σ1

/∈ T[[int]]I
or [[X ]]I,σ2

/∈ T[[atom]]I , thus the implication is still true.

Type Assignment Using the semantics described above, in [1] we defined a type system and proved
its semantics soundness. We now tackle the question of automatically producing a well typing for a
program. We defined a type inference algorithm and we would like to prove that it is syntactically sound,
in the sense that whenever it succeeds it produces a well typing for the program. We believe the algo-
rithm is sound, although we are still working on the proof. We concentrated first on the implementation
and on extending it to deal with richer languages. Our type inference algorithm assumes the base types
int, f loat,char,string and atom. It returns either open or closed types, determined by the programmer.
There is an optional definition of type declarations (like data declarations in Haskell), which, if declared
by the programmer, are used by the type inference algorithm. One example of such a declaration is
the list datatype :- type list(A) = [] | [A | list(A)]. Using the previous type definition, and
reading ”::” as ”has type”, our type inference algorithm gives the following results:

PREDICATES: TYPES:

l(X) :- (X = [] ; X = [Y|Ys], l(Ys)). l :: T1

T1 = list(C)

list(B) = [] + [ B | list(B) ]

p(X) :- X = a ; X = 3. p :: T2

T2 = atom + int

q(Y) :- Y = 1.23; Y = 5. q :: T3

T3 = float + int

h(Z) :- Z = W, Z = Q, p(W), q(Q). h :: T4

T4 = int
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