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We present an approach to pattern matching code generation based on application of relational pro-
gramming [4, 2] and, in particular, relational interpreters [3].

In a simplified case, we consider a finite set of constructors with arities C , a set of values V , and a
set of patterns P

C = {Ck1
1 , . . . ,Ckn

n }
V = C V ∗

P = | C P∗

and address a problem of matching a value (scrutinee) against an ordered list of patterns.
Our approach is based on two representations of pattern matching semantics. First, we use declara-

tive semantics, representing it as a relation

match(s, ps, i)

where s ∈ V is a scrutinee, ps ∈P∗ — an ordered list of patterns, and i ∈ N — a natural number.
This relation holds iff s matches the i-th pattern of ps. For a fixed language of patterns match can be
implemented directly in MINIKANREN once and for all.

On the other hand, we introduce a simple language S of test-and-branch constructs:

M = •
M [N]

S = returnN
switch M with [C →S ]∗ otherwise S

Here M stands for a matchable expression, which is either a reference to a scrutinee (”•”) or a
denotation of some indexed subvalue of a matchable expression. The programs in S can discriminate
on the structure of matchable expressions, testing their top constructors and eventually returning natural
numbers as results. The language S is similar to the intermediate representations for pattern matching
code, used in previous works on pattern matching implementation [6, 7].

We use a relational interpreter for S

evalo
S (s, p, i)

Here s and i have the same meaning as in declarative semantics description, p ∈S — a syntactic
representation of a program in S . The relation evalo

S encodes the operational semantics of S ; it holds, if
evaluating p for s returns i. Being relational interpreter, however, evalo

S is capable of solving a synthesis
problem: by a scrutinee s and a number i calculate a program p which makes the relation to hold. Within
this setting, we can formulate the pattern-matching synthesis problem as follows: for a given ordered list
of patterns ps find a program p, such that
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∀s ∈ V , ∀i ∈ N, evalo
S (s, p, i)∧ match(s, ps, i)

It is rather problematic to directly solve this synthesis problem with existing MINIKANREN imple-
mentations as they provide a rather limited support for universal quantification [1, 8]. However, in our
concrete case there is a straightforward way to alleviate this problem. Indeed, we may replace universal
quantification over i by a finite conjunction, as the length of ps is known at the synthesis time. As for
the quantification over s, for any concrete ps and type of scrutinee we may compute a complete set of
examples E (ps)⊆ V with the following property:

∀p ∈S : [∀s ∈ E (ps), ∀i ∈ N : match(s, ps, i)⇐⇒ evalo
S (s, p, i)] =⇒

[∀s ∈ V , ∀i ∈ N : match(s, ps, i)⇐⇒ evalo
S (s, p, i)]

It easy to see, that for arbitrary ps there exists a finite complete set of examples (indeed, any patterns
describes the “shape” of a scrutinee up to some finite depth, beyond which all scrutinees become indistin-
guishable). Thus, for a given ps and a type τ of scrutinee we may completely eliminate the quantification
by enumerating all inhabitants of type τ up to finite depth, reformulating the synthesis problem as∧

i∈[1...|ps|]

∧
s∈E (ps)

(evalo
S (s, p, i)∧match(s, ps, i))

During synthesis we aim to generate programs that have less checks in its’ bodies and expect them
to show better performance.

We implemented the synthesis framework using OCANREN — an embedding of MINIKANREN into
OCAML [5], — and evaluated it on the set of benchmarks, reported in the previous works on ad-hoc
algorithms for pattern matching code generation [6, 7]. In comparison with a simplified setting, presented
above, our implementation deals with a more elaborate pattern matching problem — in particular, we can
support guard expressions, name bindings in patterns and incorporate a deterministic top-down matching
strategy, which is common in functional languages. Of course, conventional techniques to deal with
these are still applicable, although, for example, for guards it will require postprocessing of generated
programs.

Initially, our synthesis did not demonstrate adequate results. However, we applied the following
techniques to improve both the performance and the quality of synthesized programs:

• we implemented a pruning technique, which makes the search stop exploring a certain branch if the
program, synthesized so far, contains too much nesting constructs (this factor can be precomputed
by patterns analysis) or is strictly worse then already synthesized one;

• we restricted the number of switch branches using type information about subexpressions of
scrutinee.

With these adjustments, our synthesis framework in a negligible time provides the same results as
those reported in the previous works. However for most types of scrutinee an amount of required ex-
amples and size of search space is exponential. Our future steps (besides performance optimizations)
include extending the pattern matching language to completely match that of OCAML (for now we do
not support GADTs), integrate the synthesis into the existing OCAML compiler and evaluate it on a
set of real-world programs. Another direction is extending the pattern matching language to incorpo-
rate features which are known to be hard, tedious or error-prone to implement (for example, non-linear
patterns).

An alternative for our approach can be using SyGuS where algebraic data types support was recently
added [9] to the language. Although we don’t know any tools that already support new standard.
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