
Submitted to:
TEASE-LP 2020

c© D. Rozplokhas & D. Boulytchev
This work is licensed under the
Creative Commons Attribution License.

Certified Semantics for Disequality Constraints

Dmitry Rozplokhas
Higher School of Economics and

JetBrains Research, Russia
rozplokhas@edu.hse.ru

Dmitry Boulytchev
Saint Petersburg State University and

JetBrains Research, Russia
dboulytchev@math.spbu.ru

We present a certified semantics for disequality constraints in MINIKANREN. In its initial form [4, 5]
MINIKANREN introduces a single form of constraint — unification of finite terms. While from a theo-
retical standpoint unification together with other primitive constructs (conjunction, disjunction and fresh
variable introduction) form a Turing-complete basis, in practice of relational programming a number of
extensions are oftenly used to make specifications more expressive, concise or efficient. One of the most
important extensions is disequality constraint.

Disequality constraint [3] introduces one additional type of base goal — a disequality of two terms

t1 6≡ t2

The informal semantics of disequality constraint is complementary to that of unification: it puts
certain restrictions on free variables in the terms which prevent them from turning into syntactically
equal. Similarly to unification, whose evaluation results in a substitution, which is then threaded through
the rest of computations, the effect of disequalify constraint is recorded in a constraint store which is
later used to check the violation of disequalities [1].

Disequality constraints provide an alternative to the enumeration of finite or infinite domains of terms
(depending on a specific program and MINIKANREN version). They are very useful for a special form
of case analysis when we should behave in one of two ways depending on whether or not a variable
has some specific value and this extension proved to be crucial for problems like constructing relational
interpreters in MINIKANREN [2]. Disequality constraints also allow encoding a set of solutions more
concisely since the extension always goes together with the ability to present negative information in
answers (for example, for a query (x 6≡ Apple ∧ x 6≡ Banana) MINIKANREN will give a single so-
lution [α where α 6= Apple,α 6= Banana] with a free variable α instead of the rest of the domain as
distinct solutions). At the same time the usage of the negative information by the search is limited for
finite domains and if, for example, the domain for x is just Apple and Banana, this solution will still be
produced and the search will not halt.

We present an extension of our prior work on certified semantics for core MINIKANREN [6]. In that
work we defined denotational semantics, similar to the least Herbrand model, and operational semantics,
corresponding to conventional for MINIKANREN interleaving search, and proved the soundness and
completeness of the latter w.r.t. the former. The development was formally certified in COQ proof
assistant, and a correct-by-construction interpreter was extracted.

The contribution of our current work is as follows:

• we extend our denotational semantics to handle disequality constraints;

• we introduce a new abstraction layer (a constraint store with a number of abstract operations) in
our operational semantics;

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Certified Semantics for Disequality Constraints

• we formulate a set of sufficient conditions for completeness, expressed as algebraic properties of
constraint store and abstract operators, and prove the soundness and completeness of operational
semantics w.r.t. the denotational one;

• we present a concrete implementation of constraint store and abstract operators and show that they
satisfy the sufficient conditions; thus, the soundness and completeness of the implementation with
disequality constraints follow immediately, and correct-by-construction interpreter for MINIKAN-
REN with disequalify constraints can be extracted.

The extension of denotational semantics is straightforward (as disequality constraint is complemen-
tary to unification). In operational case, we assume that we are given a set of constraint store objects,
which we denote by Ωσ (indexing every constraint store with some substitution σ and assuming the store
and the substitution are consistent with each other), and three following operations:

1. Initial constraint store Ωinit
ε (where ε is empty substitution), which does not contain any constraints

yet.

2. Adding a disequality constraint to a store add(Ωσ , t1 6≡ t2), which may result in a new constraint
store Ω′σ or a failure ⊥, if the new constraint store is inconsistent with the substitution σ .

3. Updating a substitution in a constraint store update(Ωσ ,δ ) to intergate a new substitution δ into
the current one, which may result in a new constraint store Ω′

σδ
or a failure ⊥, if the constraint

store is inconsistent with the new substitution.

The definition of operational semantics for the language with disequality constraints is now straight-
forward: for unification we use update operation and for disequality constraint we use add. In both
cases the search in the current branch is pruned if these primitives return ⊥.

To prove the soundness and completeness result we need a mean to relate both denotational and
operational semantics. As in our prior work, this can be done by prescribing a denotational interpretation
(denoted by “J•K”) not only to goals, but also to substitutions and constraint stores. Thus, we may
formulate the following set of sufficient conditions for soundness and completeness:

1. JΩinit
ε K = D (where D is the whole domain in our denotational semantics);

2. add(Ωσ , t1 6≡ t2) = Ω′σ =⇒ JΩ′σ K∩ JσK = JΩσ K∩ Jt1 6≡ t2K∩ JσK;

3. add(Ωσ , t1 6≡ t2) =⊥ =⇒ JΩσ K∩ Jt1 6≡ t2K∩ JσK =∅;

4. update(Ωσ ,δ ) = Ω′
σδ

=⇒ JΩ′
σδ

K∩ Jσδ K = JΩσ K∩ Jσδ K;

5. update(Ωσ ,δ ) =⊥ =⇒ JΩσ K∩ Jσδ K =∅.

These conditions state that given denotational interpretation and the given operations on constraint
stores are adequate to each other. The conditions 2-5 describe exactly what we need to prove the sound-
ness and completeness for base goals (unification and disequality); at the same time, these conditions
have relatively simple intuitive meaning in terms of these two operations and are expected to hold natu-
rally in all reasonable implementations of constraint stores.

References
[1] Claire E. Alvis, Jeremiah J. Willcock, Kyle M. Carter, William E. Byrd & Daniel P. Friedman (2011): cKanren:

miniKanren with Constraints. In: Proceedings of the 2011 Annual Workshop on Scheme and Functional
Programming.



D. Rozplokhas & D. Boulytchev 3

[2] William E. Byrd, A. Ballantyne, Gregory Rosenblatt & Matthew Might (2017): A unified approach to solving
seven programming problems (functional pearl). Proc. ACM Program. Lang. 1(ICFP), pp. 8:1–8:26.

[3] Hubert Comon (1991): Disunification: A Survey. In: Computational Logic - Essays in Honor of Alan Robin-
son, pp. 322–359.

[4] Daniel P. Friedman, William E. Byrd & Oleg Kiselyov (2005): The reasoned schemer. MIT Press.
[5] Jason Hemann & Daniel P. Friedman (2013): µKanren: A Minimal Functional Core for Relational Program-

ming. In: Proceedings of the 2013 Annual Workshop on Scheme and Functional Programming.
[6] Dmitry Rozplokhas, Andrey Vyatkin & Dmitry Boulytchev (2019): Certified Semantics for miniKanren. In:

miniKanren and Relational Programming Workshop, pp. 5:1–5:19.


