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miniKanren1 is a family of domain-specific languages for pure relational programming, the
core of which can be implemented in a few lines of the host language [2]. A program in miniKan-
ren can be run in different directions: given some of its arguments, it computes all the possible
values of the rest of the arguments. When the relation is run with only the last argument
unknown, we say it is run in the forward direction, otherwise we call it running in the back-
ward direction. A single relational specification creates a multitude of directions, each solving a
distinctive problem.

The search employed in miniKanren is complete, so all possible answers will be computed
eventually, albeit it may take a long time. In fact, the running time depends on the direction and
is highly unpredictable. This is where the promise of miniKanren falls short: one has to write the
relational specification with the specific direction in mind for it to be efficient. There are several
attempts to tackle this problem in an automatic fashion: one way is to use a divergence test to
stop execution of definitely diverging computations [5], the other is to employ specialization [4],
while the one we have been working on recently is to convert a relational specification into a
function that runs fast in the given direction.

Given a relational specification equipped with a certain direction, functional conversion con-
structs a function in which unifications are mapped either into pattern matching or are used in
let-bindings to compute the intermediate results. Disjunctions give rise to branches in pattern
matchings within a function definition, while conjunctions represent sequential computations.
Lists are used to model multitude of possible answers which are available by the use of disjunc-
tions. The most nontrivial part of the functional conversion is to determine the order in which
to bind each variable within the function body.

Binding-time analysis, or BTA, is used in compilation and specialization to determine at what
time the values of the variables can be computed. Typically, BTA divides all computations into
two stages: compile-time, or static, and execution time, or dynamic. One approach to BTA
is to explicitly annotate program variables and computations by equipping them with their
binding times. In relational programming there is no predefined execution direction — no order
in which conjunctions should be considered — which complicates the problem of identifying
variables binding times. It has been shown [4] that online conjunctive partial deduction may
improve program running time in a given direction. We are investigating the applicability of
offline specialization methods in the context of functional conversion. Offline approaches are
known [3] to be safe, helpful in the design and implementation of partial evaluation projects,
and more efficient than the online ones, which is crucial in the context of relational programming.
The existing binding-time analyses for pure Prolog [1] and mercury [7] only distinguish between
static and dynamic variables, which does not help to work out the order. Natural numbers serve
as annotations in [6] and are better suited to our problem.

1miniKanren language web site: http://minikanren.org
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2 Binding-Time Analysis for miniKanren

The binding-time analysis for miniKanren should annotate a given goal as well as determine
suitable directions for all relation calls involved in the result computation. We start by annotat-
ing some free variables within the goal with 0 which means they are the input or static variables,
while all others are annotated with undef . This is the way we specify a direction for the goal.

We assume that all goals are in canonical normal form: a goal is a disjunction of conjunctions
of either relation calls or unifications; all free variables are brought up into scope by the fresh
operator on the top level. Relation calls (Rk) and constructors can only have variables (V ) as
their arguments. Unification should have a single variable on the left-hand side and a term (T )
on the right-hand side, with the exception of unifying two constructors of arity 0. We leave
out unifications of the zero-arity constructors, since they can either evaluate to a failure or
to a success without extending the substitution which can be determined statically. Any core
miniKanren program can be converted to this form. We use the following representation of the
goal in canonical form:

Goal = fresh V1 . . .Vn
∨∧

(call Rk V1 . . .Vk |V ≡ T )

The BTA algorithm executes the following steps until a fixpoint is reached. Since disjuncts do
not influence each other, we treat every disjunct in isolation. At each step, a unification suitable
for annotation is selected within the conjunction. If there are no unifications to annotate, then we
select a relation call. Whenever a new annotation is assigned to a variable, all other occurrences
of this variable within the conjunction get the same annotation.

Unifications are annotated if there is enough information. There are two possible cases
described below. We write annotations in superscripts; t[x0, . . . ,xk] denotes a term with free
variables x0, . . . ,xk.

• The unification of a variable annotated with undef with a term in which all free variables
are annotated with numbers: xundef ≡ t[yi0

0 , . . . ,y
ik
k ]. In this case we annotate x with 1+

max{i0, . . . , ik}.
• The unification of a variable annotated with a number with a term, some variables of which

are annotated with undef : xn ≡ t[yi0
0 , . . . ,y

ik
k ]. Here all undef variables are to be annotated

with 1+n.
If a unification does not conform to any of these cases, it should not be annotated at the

current step. Relation calls are only annotated when all unifications have been considered.
A relation call in which all variables are annotated with undef as well as those with numerical
annotations do not need to be considered. Thus relation calls in which only some of the variables
are annotated with numbers should be examined further.

Let us define what it means for two calls to the same relation to have consistent direction.
We start by mapping all numerical annotations to 0. Considering undef annotation to be less
than 0, we then compare the annotations of variables of one relation call to the annotations of
the respective variable of the other. If all variable pairs are ordered in the same way, then they
have consistent direction. For example, the relation calls R3 xundef y0 z0 and R3 xundef y1 z2 have
consistent direction, since they become equal after mapping annotations to 0. The relation call
R3xundef yundef z3 also have consistent direction with the call R3 xundef y0 z0 since after mapping to
0, the first call becomes R3xundef yundef z0, and annotations of all variables but one are the same.
Whereas the direction of R3 x0 y0 zundef is not consistent with the direction of R3 xundef y0 z0:
annotation of x in the first call is greater than in the second (0 > undef ) while the opposite holds
for the variable z.
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If at the current step the conjunct under consideration has a consistent direction with some
relation call annotated before, then there is no need to explore this direction again. We use
the previous call to annotate the current one. Only a relation call with the direction which has
not been encountered before should be annotated. It is done by considering its body: variables
annotated within the call keep their annotations in the body, which is annotated by the described
algorithm. All annotated relation definitions are memoized while algorithm runs, so they can
be reused if necessary.

If all variables of the input relation call are specified as dynamic, our algorithm is unable to
apply any of the rules described. The same issue arises when there are dynamic variables which
unify only with undef fresh variables or constructors over them. Considering the way functional
conversion should behave in this circumstance helps to accommodate it in the BTA algorithm.
Whenever a fresh variable is part of the answer, miniKanren reifies it as a symbolic variable
which stands for all possible values. It is reasonable to reperesent this with a lazy generator when
doing functional conversion. When dealing with this direction, BTA first attempts annotation
as described and if there are undef variables left, they are treated as if they were unified with a
generator available statically.

We presented a binding-time analysis algorithm for miniKanren that determines the order
in which variables are bound. The algorithm terminates since there are finitely many different
relation calls to consider, and each relation call has finitely many possible annotations. Unfor-
tunately, some variables can remain undef after the algorithm is finished. This happens when
there are relation calls which influence the direction of each other. Currently we choose the
leftmost relation call to annotate first; while another, less efficient but more fair, solution may
be to consider all possible combinations of directions. In our experience, this problem rarely
arises in the context of relational interpreters, but we should further investigate the class of such
programs and develop a better strategy of dealing with them.
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